K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

chtt

25 tháng 4 2016

    Ta có : (x-2014)^2010 >=0 và (y-2010)^2014 >= 0 nên:

                  (x-2014)^2010 + ( y-2010)^2014 >=0

           Dấu bằng xảy ra khi:

                    (x-2014) ^2010=0 và (y-2010)^2014 =0

           Suy ra :  (x-2014)=0 và (y-2010)=0

            =>        x=2014 và y=2010     => x+y = 2014+2010=4024

25 tháng 12 2015

x+y=2014+2010=4024

tick đi rồi nói cách làm cho,bảo đảm

25 tháng 12 2015

vì (x-2014)^2010 và (y-2010)^2014 luôn lớn hơn hoặc bằng 0

=> x-2014=0  => x=2014

     y-2010=0  => y=2010

tick nhé bạn. Cảm ơn nhiều! Giáng sinh vui vẻ!

4 tháng 10 2015

vì: xn \(\ge0\)

=> (x - 3)2012 + (3y - 12)2014 = 0

=> x - 3 = 0 và 3y - 12 = 0

x - 3 = 0 => x = 3

3y - 12 = 0

3y = 12

y = 4

=> cặp (x;y) = (3;4) 

10 tháng 1 2016

bài 1

[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]

=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0

=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0

Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0

=>x+2=0

=>x=-2

 

10 tháng 1 2016

Bài 1: x=-2

Bài 2:x=17

Bài 3:x=2014

y=2010

 

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$

$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$

$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$

Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(x-y)^2=(xy-4)^2=y^2=0$

$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)

Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.