K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

Chọn B.

Ta có:

NV
8 tháng 3 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=2\)

12 tháng 4 2022

Đơn giản là bạn vẽ cái hàm bậc 4 đó ra và cho -m và -m-10 cắt thôi. Vì -m-10<-m nên -m-10 sẽ nằm ở dưới, còn -m nằm trên. Nên -m sẽ cắt 2 điểm và -m-10 cắt 4 điểm cho ta 6 điểm. Ngoài ra k còn trường hợp nào khác mà -m và -m-10 cắt thỏa mãn

12 tháng 4 2022

Mình cảm ơn ạ, cho mình hỏi là nếu m đi qua cực trị thì có được tính là có nghiệm không ạ?

21 tháng 5 2019

28 tháng 12 2018

Chọn B

27 tháng 12 2019

Đáp án C.

Ta có: dSiWSxLbnMfB.png

=> y = 3, y = -3 là hai tiệm cận ngang.

16 tháng 9 2017

Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ),  x 0  ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.

Đáp án: D

13 tháng 11 2018

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

3 tháng 9 2017

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

NV
28 tháng 1 2021

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\) 

Do hệ số bậc cao nhất của x dương nên:

- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)

- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)

Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất

Từ BBT ta thấy \(x=0\) là cực tiểu

Vậy \(-3\le m< 3\)

24 tháng 6 2021

cho em hỏi là tại sao m≠0 mà đkxđ của m lại là -3<m<3 ạ ?