Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau và là số chẵn. A. 1260 B. 1234 C. 1250 a ∈ A \ {0;d} D. 1235...
Đọc tiếp
Từ các chữ số của tập hợp A={0;1;2;3;4;5;6} lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau và là số chẵn.
Gọi
là số cần lập .
Vì x là số chẵn nên e ∈ {0; ;2; 4; 6}. Ta xét các trường hợp sau
e = 0 ⇒ e có 1 cách chọn
Số cách chọn
là một chỉnh hợp của 6 phần tử
Số cách chọn các chữ số còn lại là
Do đó trường hợp này có tất cả
số
e ≠ 0 ⇒ e có 3 cách chọn
Với mỗi cách chọn e ta có a ∈ A \ {0;e} nên có 5 cách chọn a.
Số cách chọn các số còn lại là:
Do đó trường hợp này có tất cả
số
Vậy có tất cả: 360 + 900 = 1260 số thỏa yêu cầu bài toán.
Chọn A.