K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Ta thấy: $(x-1)^2\geq 0$ với mọi $x$

$(y+2)^2\geq 0$ với mọi $y$

$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$

$\Rightarrow x=1; y=-2$

NM
13 tháng 10 2021

ta có:

undefined

20 tháng 1 2019

Đề thiếu: x  > 1 thì mới tìm được min

\(A=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)

Áp dụng bđt Cô-si được

\(A=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x-1}{2}=\frac{2}{x-1}\)

                      \(\Leftrightarrow\left(x-1\right)^2=4\)

Mà x > 1 nên x - 1 > 0

          => x - 1 = 2

         => x = 3

Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow x=3\)

13 tháng 9 2021

\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)

Dấu \("="\Leftrightarrow x=-5\)

 

 

 

18 tháng 9 2021

cảm ơn nha:3

 

16 tháng 4 2020

x^2 > hoặc = -10

min A = -10 <=> ko tìm được x.

24 tháng 6 2018

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1.\)

\(\left(x^4+1\right)\left(y^4+1\right)+2013\ge2x^2.2y^2+2013\ge4+2013=2017\)

Min=2017 

Dấu "=" xảy ra khi x=y=1

12 tháng 5 2017

x^2/1+x^4 bé nhất khi 1 + x^4 bé nhất => x^4-0 => x^4 + 1 = 1=> x=0

Thay x=0 vào x^2/ 1+ x^4 có 0^2/ 1+0^4= 0

Vậy giá trị nhỏ nhất của x^2/ 1+ x^4 là 0 tại x=0