K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

Ta có: 

 

Do pt có 3 điểm cực trị ( vì ab< 0) nên phương trình f’ ( x) =0 có 3 nghiệm phân biệt.

Do đó (*) có 3 nghiệm phân biệt.

Chọn C.

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

10 tháng 3 2023

\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)

\(\Leftrightarrow8m^2-20m-12< 0\)

\(KL:m\in\left(-1;3\right)\)

30 tháng 6 2019

Bài 1:

Từ P(x) = 3x2+8x-4 = -4

=> 3x2+8x = 0

x(3x+8) = 0

=> x = 0 3x+8 = 0

=> x = 0 3x = 8

=> x = 8/3

Bài 2 :

Ta có x = -1 là nghiệm của đa thức f(x) = 2x2-x+m

=> f(-1) = 2(-1)2-(-1)+m = 0

=> 2+1+m = 0

=> 3+m = 0

m = 0-3

m = -3

14 tháng 9 2021

c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)

\(=x^3y^3+5xy^2-x^2y-5\)

d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)

\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)

\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)

\(=16x^4+4x^2-4x-1\)

14 tháng 9 2021

Bài 9

a)\(\left(x+3\right)\left(x+4\right)\)                               b)\(\left(x-4\right)\left(x^2+4x+16\right)\)

\(=x^2+4x+3x+12\)                         \(=\left(x-4\right)\left(x^2+x.4+4^2\right)\)

\(=x^2+7x+12\)                                  \(=x^3-4^3=x^3-64\)

NV
7 tháng 5 2019

Bài 1:

a/ Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

\(\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Rightarrow-1< m< 2\)

b/ Để \(f\left(x\right)>0\) vô nghiệm \(\Rightarrow f\left(x\right)\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\-m+3\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -1\\m\ge3\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Bài 2:

a/ \(\Leftrightarrow\left\{{}\begin{matrix}2>0\\\Delta=\left(m-2\right)^2-8\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+4m-28< 0\)

\(\Rightarrow-2-4\sqrt{2}< m< -2+4\sqrt{2}\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta=\left(m-1\right)^2-4m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)\left(-1-3m\right)\ge0\end{matrix}\right.\) \(\Rightarrow0< m\le1\)

Bài 3:

\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{cosx.cos\frac{\pi}{4}+sinx.sin\frac{\pi}{4}}{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}=\frac{sinx+cosx}{sinx-cosx}\)