K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

 

Xét  x ∈ - π ; π mà  2 sin   x + 1 ≥ 0 2 cos   x + 1 ≥ 0 suy ra  x ∈ - π 6 ; 2 π 3

Ta có: 

Đặt  t =   sin x + cos x = 2 sin x + π 4 ⇒ t ∈ 3 - 1 2 ; 2

Và 2.sinx.cos x= t2- 1

Khi đó:

Suy ra y= f( t)  là hàm số đồng biến trên  3 - 1 2 ; 2 ⇒ m i n   f ( t ) = f ( 2 ) = 2 + 2 2 m a x   f ( t ) = f 3 - 1 2 = 1 + 3 2

Do đó, để f( t) = m2/ .8 có nghiệm  ⇔ 1 + 3 2 ≤ m 2 8 ≤ 2 + 2 2 ⇔ 2 1 + 3 ≤ m ≤ 4 1 + 2

Mà m nguyên chọn m= 5; 6;7; 8.

Chọn C.

23 tháng 9 2019

Đáp án D

14 tháng 3 2017

Đáp án C

Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.

Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

28 tháng 1 2019

5 tháng 8 2019

Đáp án C

6 tháng 6 2019

Đáp án A

*Phương trình m + 3 m + 3 sin   x 3 3 = sin   x ⇔ m + 3 m + 3 sin   x 3 = sin 3 x  

⇔ ( m + 3 sin   x ) + 3 m + 3 sin   x 3 = sin 3 x + 3 sin   x       ( 1 )

* Xét hàm số f ( t ) = t 3 + 3 t  trên ℝ . Ta có f ' ( t ) = 3 t 2 + 3 > 0 ∀ t ∈ ℝ  nên hàm số f(t) đồng biến trên ℝ .

Suy ra (1)  f 3 + 3 sin   x 3 f ( sin   x ) ⇔ 3 + 3 sin   x 3 = sin   x

Đặt sin x = t, t ∈ [ - 1 ; 1 ]  Phương trình trở thành  t 3 - 3 t = m

* Xét hàm số g(t) trên t ∈ - 1 ; 1  Ta có g ' ( t ) = 3 t 2 - 3 ≤ 0 , ∀ t ∈ [ - 1 ; 1 ]  và g ' ( t ) = 0 ⇔ t = ± 1  Suy ra hàm số g(t) nghịch biến trên [-1;1]

* Để phương trình có nghiệm đã cho có nghiệm thực  ⇔ Phương trình t 3 - 3 t = m  có nghiệm trên [-1;1]

m i n [ - 1 ; 1 ] g ( t ) ≤ m ≤ m a x [ - 1 ; 1 ] g ( t ) ⇔ g ( 1 ) ≤ m ≤ g ( - 1 ) ⇔ - 2 ≤ m ≤ 2

Vậy có 5 giá trị nguyên của m thỏa mãn là  m ∈ - 2 ; - 1 ; 0 ; 1 ; 2

16 tháng 10 2018

NV
11 tháng 11 2021

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)