K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Điều kiện. x≥1/3

Ta có:

2 x 3 + x 2 - 3 x + 1 = 2 ( 3 x - 1 ) 3 x - 1 ⇔ 2 x 3 + x 2 + 1 =   2   ( 3 x - 1 ) 3 + ( 3 x - 1 ) 2 + 1 f ( x ) = f ( 3 x - 1 )

Xét hàm số f(t) = 2t3+ t2+ 1 liên tục tên R.

Ta có: đạo hàm  f’ (t) = 6t2+2t> 0 với t>0 .

Do đó ;  hàm số f(t) đồng biến trên (0; +).

f ( x ) = f ( 3 x - 1 ) ⇔ x = 3 x - 1 ⇔ x 2 = 3 x - 1 ⇔ x = 3 - 5 2 > 1 3 x = 3 + 5 2 > 1 3

Tổng các nghiệm là 3.

 Chọn C.

NV
4 tháng 10 2021

ĐKXĐ: \(x>-1\)

Bước quan trọng nhất là tách hàm

\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)

Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)

a: \(x^2-8x-33=0\)

a=1; b=-8; c=-33

Vì ac<0 nên phương trình có hai nghiệm phân biệt

b: \(A=3\left(x_1+x_2\right)^2-2x_1x_2=3\cdot8^2-2\cdot\left(-33\right)=192+66=258\)

 

5 tháng 3 2022

a.

-\(\Delta=\left(-8\right)^2-4.\left(-33\right)=64+132=196>0\)

Vậy pt luôn có 2 nghiệm phân biệt

-Giả sử: \(x_1;x_2\) là nghiệm của pt

Theo hệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-8\right)}{1}=\dfrac{8}{1}=8\\x_1.x_2=\dfrac{-33}{1}=-33\end{matrix}\right.\)

 

14 tháng 6 2017

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3

Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng

|x – 1| = 0 ó x – 1 = 0  ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.

Vậy có 1 khẳng định đúng

Đáp án cần chọn là: B

NV
24 tháng 12 2020

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

6 tháng 1 2021

(x-1)(x-3) =x^2-4x+3 chứ ạ?

NV
9 tháng 1 2023

Em kiểm tra lại đề bài, pt này chắc chắn là ko giải được

14 tháng 9 2017

Xét phương trình |x – 3| = 1

TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3

Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)

TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3

Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)

Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4

Nên x = 4 là nghiệm của phương trình |x – 3| = 1

Khẳng định đúng là (2) và (3)

Đáp án cần chọn là: B