Cho phương trình: 2 x 3 + x 2 - 3 x + 1 = 2 3 x - 1 3 x - 1
Tính tổng các nghiệm cùa phương trình là :
A.1
B.2
C.3
D.4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>-1\)
Bước quan trọng nhất là tách hàm
\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)
Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)
a: \(x^2-8x-33=0\)
a=1; b=-8; c=-33
Vì ac<0 nên phương trình có hai nghiệm phân biệt
b: \(A=3\left(x_1+x_2\right)^2-2x_1x_2=3\cdot8^2-2\cdot\left(-33\right)=192+66=258\)
a.
-\(\Delta=\left(-8\right)^2-4.\left(-33\right)=64+132=196>0\)
Vậy pt luôn có 2 nghiệm phân biệt
-Giả sử: \(x_1;x_2\) là nghiệm của pt
Theo hệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-8\right)}{1}=\dfrac{8}{1}=8\\x_1.x_2=\dfrac{-33}{1}=-33\end{matrix}\right.\)
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)
Đặt \(\sqrt{x^2-4x+5}=t>0\)
\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)
\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)
Em kiểm tra lại đề bài, pt này chắc chắn là ko giải được
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4
Nên x = 4 là nghiệm của phương trình |x – 3| = 1
Khẳng định đúng là (2) và (3)
Đáp án cần chọn là: B
Điều kiện. x≥1/3
Ta có:
2 x 3 + x 2 - 3 x + 1 = 2 ( 3 x - 1 ) 3 x - 1 ⇔ 2 x 3 + x 2 + 1 = 2 ( 3 x - 1 ) 3 + ( 3 x - 1 ) 2 + 1 f ( x ) = f ( 3 x - 1 )
Xét hàm số f(t) = 2t3+ t2+ 1 liên tục tên R.
Ta có: đạo hàm f’ (t) = 6t2+2t> 0 với t>0 .
Do đó ; hàm số f(t) đồng biến trên (0; +∞).
f ( x ) = f ( 3 x - 1 ) ⇔ x = 3 x - 1 ⇔ x 2 = 3 x - 1 ⇔ x = 3 - 5 2 > 1 3 x = 3 + 5 2 > 1 3
Tổng các nghiệm là 3.
Chọn C.