K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

Điều kiện: x> -1

Ta có: 3x2- 6x+ ln( x+1) 3+1=0   hay 3x2- 6x+ 3ln( x+1)+1=0 

f(x)=3x2- 6x+ 3ln( x+1) +1=0 ⇒ f ' ( x ) = 6 x - 6 + 3 x + 1

Đạo hàm f’ (x) = 0 khi và chỉ khi (2x- 2) (x+ 1) +1=0

⇔ x = ± 1 2

 

Từ đây, ta có bảng biến thiên của f(x):

 

Nhìn vào bảng biến thiên ta sẽ có phương trình đã cho có 3 nghiệm phân biệt.

Chọn C.

NV
19 tháng 3 2022

Pt đã cho có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(2m+9\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\-m^2-5m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\-5< m< 0\end{matrix}\right.\)

\(\Rightarrow m=\left\{-4;-3;-2\right\}\) có 3 giá trị nguyên

23 tháng 8 2018

Đáp án C

Điều kiện: .

Xét hàm số ; .

Chia cho ta được: 

 

Bảng biến thiên và đồ thị:

Đặt .

Phương trình .

Với , từ đồ thị ta thấy phương trình này chỉ cho 1 nghiệm.

Với , từ đồ thị ta thấy phương trình này cho 3 nghiệm.

Với , từ đồ thị ta thấy phương trình này chỉ cho 1 nghiệm.

 

Vậy phương trình đã cho có 5 nghiệm phân biệt.

21 tháng 5 2019


a: Khi m=1 thì (1) sẽ là:

x^2-x-8=0

=>\(x=\dfrac{1\pm\sqrt{33}}{2}\)

b: 3x1^2+3x2^2+2x1x2=5

=>3[(x1+x2)^2-2x1x2]+2x1x2=5

=>3[(2m-1)^2-2(-8m)]+2(-8m)=5

=>3(4m^2-4m+1+16m)-16m=5

=>12m^2+36m+3-16m-5=0

=>12m^2+20m-2=0

=>\(m=\dfrac{-5\pm\sqrt{31}}{6}\)

4 tháng 5 2018

Đáp án A

 

Ghi nhớ: Nếu hàm số

liên tục trên đoạn thì phương trình

có ít nhất một nghiệm nằm trong khoảng .

b: x1=3x2 và x1+x2=2m-2

=>3x2+x2=2m-2 và x1=3x2

=>x2=0,5m-0,5 và x1=1,5m-1,5

x1*x2=-2m

=>-2m=(0,5m-0,5)(1,5m-1,5)

=>-2m=0,75(m^2-2m+1)

=>0,75m^2-1,5m+0,75+2m=0

=>\(m\in\varnothing\)

c: x1/x2=3

x1+x2=2m-2

=>x1=3x2 và x1+x2=2m-2

Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn

11 tháng 10 2018

Đáp án B

12 tháng 2 2017

Phương trình bậc hai a x 2   +   b x   +   c   = 0 có hai nghiệm âm phân biệt khi Δ > 0, (-b)/a < 0, c/a > 0. Ta có

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Đáp án: B