\(Cho\) \(\frac{a}{5}\)=\(\frac{b}{4}=\frac{c}{3}\) va abc= -480.tim a,b,c
(cac ban giai chi tiet giup minh nhe)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sai đè thì phải,đúng phải là 1/99
Ta thấy:Từ 1->1/100 có 100 số.
Ta có:100=1.100
Vì 1=1 ;1/2<1 ;1/3<1 ;1/4<1 ;... ;1/90<1 ;1/100<1.
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 1.100=100\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 100\)
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}\)
\(x=-\frac{1}{5}:5=-\frac{1}{25}\)
c) \(\frac{5}{3}-x=7+\frac{4}{5}\)
\(\frac{5}{3}-x=\frac{39}{5}\)
\(x=\frac{5}{3}-\frac{39}{5}=-\frac{92}{15}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}+\frac{5}{11}\)
\(2x=\frac{17}{22}\)
\(x=\frac{17}{22}:2\)
\(x=\frac{17}{44}\)
\(x=-\frac{1}{5}:5\)
NÈ BẠN!!!
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{25}{35}+\frac{28}{35}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}+\frac{11}{5}\)
\(5x=2\)
\(x=\frac{2}{5}\)
c)\(\frac{5}{3}-x=7\)
\(x=\frac{5}{3}-7=\frac{5}{3}-\frac{21}{3}=-\frac{16}{3}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}-\frac{-5}{11}=\frac{7}{22}-\frac{-10}{22}=\frac{17}{22}\)
\(x=\frac{17}{22}:2=\frac{17}{22}\cdot\frac{1}{2}=\frac{17}{44}\)
K CHO MÌNH NHA!!!
1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)
Đặt \(x=a-b,y=b-c,z=c-a\to x+y+z=0.\) Ta có
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5+z^5=x^5+y^5+\left(-x-y\right)^5=x^5+y^5-\left(x+y\right)^5.\)
Mà \(\left(x+y\right)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5,\) suy ra
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)=5xyz\left(x^2+xy+y^2\right)\vdots5xyz=5\left(a-b\right)\left(b-c\right)\left(c-a\right).\)
Suy ra điều phải chứng minh.
Ta có: a/5 = b/4 = c/3
=>a3/125 = b3/64 = c3/27= a.b.c/5.4.3 = -480/60 = -8
=>a3=-8.125= -1000 = -103 =>a= -10
b3=-8.64= -512 = -83 =>b= -8
c3= -8.27= -216 = -63 =>c=-6
tại sao lại là a^3/125=b^3/64=c^3/27