K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9

Lời giải:

$\frac{a^3+2a^2-1}{a^3-2a^2-2a+1}$

$=\frac{(a^3+a^2)+(a^2-1)}{(a^3+a^2)-(3a^2+3a)+(a+1)}$
$=\frac{a^2(a+1)+(a+1)(a-1)}{a^2(a+1)-3a(a+1)+(a+1)}$
$=\frac{(a+1)(a^2+a-1)}{(a+1)(a^2-3a+1)}$

$=\frac{a^2+a-1}{a^2-3a+1}$

1 tháng 10 2019

NV
19 tháng 7 2021

Xét hiệu \(2a^2+2b^2-\left(a^3+ab^2\right)=\left(2a^2-a^3\right)+\left(2b^2-ab^2\right)\)

\(=a^2\left(2-a\right)+b^2\left(2-a\right)\)

\(=\left(a^2+b^2\right)\left(2-a\right)\)

Do \(a^2+b^2\ge0;\forall a;b\) nên:

\(2a^2+2b^2>a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\2-a>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2\ne0\\a< 2\end{matrix}\right.\)

\(2a^2+2b^2=a^3+ab^2\) khi \(\left[{}\begin{matrix}a^2+b^2=0\\2-a=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=0\\a=2\end{matrix}\right.\)

\(2a^2+2b^2< a^3+ab^2\) khi \(\left\{{}\begin{matrix}a^2+b^2\ne0\\a>2\end{matrix}\right.\) \(\Rightarrow a>2\)

\(2a^2+2b^2\ge a^3+ab^2\) khi \(2-a\ge0\Leftrightarrow a\le2\)

1: \(=\dfrac{-\left[\left(x+5\right)^2-9\right]}{\left(x+2\right)^2}=\dfrac{-\left(x+5-3\right)\left(x+5+3\right)}{\left(x+2\right)^2}\)

\(=\dfrac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+8\right)}{x+2}\)

2: \(=\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\dfrac{2x}{x+4}\)

3: \(=\dfrac{5x\left(x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{5x}{x^2-1}\)

4: \(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

5: \(=\dfrac{2a\left(a-b\right)}{a\left(c+d\right)-b\left(c+d\right)}=\dfrac{2a\left(a-b\right)}{\left(c+d\right)\left(a-b\right)}=\dfrac{2a}{c+d}\)

6: \(=\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\cdot\left(-1\right)=\dfrac{-x}{x+y}\)

7: \(=\dfrac{2\left(1-a\right)}{-\left(1-a^3\right)}=\dfrac{-2\left(1-a\right)}{\left(1-a\right)\left(1+a+a^2\right)}=-\dfrac{2}{1+a+a^2}\)

8: \(=\dfrac{x^4\left(x^3-1\right)}{\left(x^3-1\right)\left(x^3+1\right)}=\dfrac{x^4}{x^3+1}\)

9: \(=\dfrac{\left(x+2-x+2\right)\left(x+2+x-2\right)}{16x}=\dfrac{4\cdot2x}{16x}=\dfrac{1}{2}\)

10: \(=\dfrac{0.5\left(49x^2-y^2\right)}{0.5x\left(7x-y\right)}=\dfrac{1}{x}\cdot\dfrac{\left(7x-y\right)\left(7x+y\right)}{7x-y}\)

\(=\dfrac{7x+y}{x}\)

 

a) Ta có: \(a^2+2a-4=0\)

\(\Leftrightarrow\left(\sqrt{5}-1\right)^2+2\left(\sqrt{5}-1\right)-4=0\)

\(\Leftrightarrow6-2\sqrt{5}+2\sqrt{5}-2-4=0\)

\(\Leftrightarrow0=0\)(đúng)

b) Ta có: \(\left(a^3+2a^4-4a+2\right)^{10}\)

\(=\left[a\left(a^2+2a-4\right)+2\right]^{10}\)

\(=2^{10}=1024\)

3 tháng 10 2018

a) Ta có x 6 + 2 x 3 + 3 x 3 − 1 . 3 x x + 1 . x 2 + x + 1 x 6 + 2 x 3 + 3 = 3 x x 2 − 1  

b) Gợi ý: a 3   +   2 a 2  - a - 2 = (a - 1)(a + 1) (a + 2)

Thực hiện phép tính từ trái qua phải thu được:  = 1 3

25 tháng 12 2018

Chọn D.

Phương pháp: 

Đạo hàm hàm số f(x) và chọn giá trị x phù hợp để tính giá trị biểu thức đề bài cho.

18 tháng 4 2018

18 tháng 3 2017

Chọn D

Đạo hàm hai vế f(x) 

 

Số hạng tổng quát thứ k + 1 trong khai triển thành đa thức của