K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

Chọn C

Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2

Cho -7x - 2 = 0 ⇒ x = -2/7

13 tháng 4 2023

Bài 1

Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)

\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm

VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)

\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)

\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)

Ra hai kết quả khác nhau 

\(\Rightarrow x=-4\) không là nghiệm

Bài 2

\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm 

a: \(f\left(x\right)=x^4-x^3+2x^2+3x\)

\(g\left(x\right)=x^4+x^3+2x^2\)

b: Hệ số tự do của f(x) là 0 và g(x) là 0

Hệ số cao nhất của f(x) là 1

Hệ số cao nhất của g(x) là 1

c: Bậc của f(x) là 4

Bậc của g(x) là 4

`1,`

`f(x)+g(x)=(5x^4+4x^2-2x+7)+(4x^4-2x^3+3x^2+4x-1)`

`= 5x^4+4x^2-2x+7+4x^4-2x^3+3x^2+4x-1`

`=(5x^4+4x^4)-2x^3+(4x^2+4x^2)+(-2x+4x)+(7-1)`

`= 9x^4-2x^3+8x^2+2x+6`

Đề phải là `f(x)-g(x)` chứ nhỉ :v?

`f(x)-g(x)=(5x^4+4x^2-2x+7)-(4x^4-2x^3+3x^2+4x-1)`

`= 5x^4+4x^2-2x+7-4x^4+2x^3-3x^2-4x+1`

`= (5x^4-4x^4)+2x^3+(-2x-4x)+(4x^2-3x^2)+(7+1)`

`= x^4+2x^3-6x+x^2+8`

16 tháng 6 2021

a) * Ta có : f(0) = 2 ; g(0) = 2 => f(0) = g(0) 

f(1) = 3 ; g(1) = 3 => f(1) = g(1) ; 

f(-1) = 1 ; g(-1) = 1 =>  f(-1) = g(-1) 

f(2) = 34 ; g(2) = 34 => f(2) = g(2)

f(-2) = -30 ; g(-2) = - 30 => f(-2)  = f(2)

b) Nhận thấy f(3) = 245 ; g(3) = 125

=> f(3) > g(3) 

=> f(x) \(\ne\) g(x)

12 tháng 5 2016

xét f(x)=0=> (x+1)(x-1)=0

   =>__x+1=0=>x=-1

      |__x-1=0=> x=1

vậy nghiêm của f(x) là ±1

12 tháng 5 2016

xét f(x)=0 => (x+1)(x-1)=0

=> __x+1=0=> x=-1

    |__x-1=0=> x=1

vậy nghiệm của f(x) là ±1

ta có: nghiệm của f(x) cũng là nghiệm của g(x) nên ±1 cũng là nghiêm của g(x)

g(-1)=\(\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)+2=-1+a-b+2=1+a-b=0\)

g(1)=\(1^3+a.1^2+b.1+2=1+a+b+2=3+a+b=0\)

=>1+a-b=3+a+b

=>1-3-b-b=-a+a

=> -2-2b=0

=> -2b=2

=>b=2:(-2)=-1

thay b vào ta có:

\(g\left(1\right)=3+a+\left(-1\right)=0\)

=> 2+a=0

=> a=-2

Vậy a=-2 và b=-1

1: 

a: f(3)=2*3^2-3*3=18-9=9

b: f(x)=0

=>2x^2-3x=0

=>x=0 hoặc x=3/2

c: f(x)+g(x)

=2x^2-3x+4x^3-7x+6

=6x^3-10x+6

5 tháng 6 2020

a) f(x) = -x + 2x2 + 3x5 + 9/2

g(x) = 3x - 2x2 - 3x5 + 3

b) f(x) + g(x) = ( -x + 2x2 + 3x5 + 9/2 ) + ( 3x - 2x2 - 3x5 + 3 )

                     = ( -x + 3x ) + ( 2x2 - 2x2 ) + ( 3x5 - 3x5 ) + ( 9/2 + 3 )

                     = 2x + 15/2

c) Đặt h(x) = 2x + 15/2

Để h(x) có nghiệm <=> 2x + 15/2 = 0

                              <=> 2x = -15/2

                              <=> x = -15/4

Vậy nghiệm của h(x) là -15/4

Quỳnh chưa sắp xếp nhé !, sai bảo cj, cj sửa.

a, Ta có :  \(f\left(x\right)=-x+2x^2-\frac{1}{2}+3x^5+5\)

\(=-x+2x^2+\frac{9}{2}+3x^5\)

Sắp xếp : \(f\left(x\right)=3x^5+2x^2-x+\frac{9}{2}\)

\(g\left(x\right)=3-x^5+\frac{1}{3}x^3+3x-2x^5-2x^2-\frac{1}{3}x^3\)

\(=3-3x^5+3x-2x^2\)

Sắp xếp : \(g\left(x\right)=-3x^5-2x^2+3x+3\)

b, \(f\left(x\right)+g\left(x\right)=\left(3x^5+2x^2-x+\frac{9}{2}\right)+\left(-3x^5-2x^2+3x+3\right)\)

\(=3x^5+2x^2-x+\frac{9}{2}-3x^5-2x^2+3x+3\)

\(=2x+\frac{15}{2}\)

c, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

Đặt f(x) + g(x) = 2x + 15/2  (đã có bên trên.)

Ta có : \(h\left(x\right)=2x+\frac{15}{2}=0\)

\(\Leftrightarrow2x+\frac{15}{2}=0\Leftrightarrow2x=-\frac{15}{2}\Leftrightarrow x=-\frac{15}{4}\)