K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

K/c là \(\dfrac{1700}{\sin25^0}\approx4023\left(m\right)\)

20 tháng 8 2018

Độ cao của máy bay là CD, độ dài AB = 60m; D A C ^ = 30 0 ; D B C ^ = 50 0

Gọi BC = x => AC = 60 + x

Xét tam giác BDC vuông tại C có:

Xét tam giác ADC vuông tại C có:

Vậy độ cao của máy bay so với mặt đất là 67,19m

Đáp án cần chọn là: C

28 tháng 1 2019

Độ cao của máy bay là CD, độ dài AB = 80m

Gọi BC = x (x > 0) => AC = 80 + x

Xét tam giác BDC vuông tại C có CD = x . tan   55 0

Xét tam giác ADC vuông tại C có CD = (80 + x). tan   44 0

Suy ra  x . tan   55 0 =  (80 + x).  tan   44 0

=> x 113,96m

=> CD = 113,96. tan   55 0 ≈ 162,75m

Vậy độ cao của máy bay so với mặt đất là 162,75m

Đáp án cần chọn là: A

3 tháng 8 2021

Độ cao của máy bay là CD, độ dài AB = 80m

Gọi BC = x (x > 0) => AC = 80 + x

Xét tam giác BDC vuông tại C có CD = x . tan   55 0

Xét tam giác ADC vuông tại C có CD = (80 + x). tan   44 0

Suy ra  x . tan   55 0 =  (80 + x).  tan   44 0

=> x ≈ 113,96m

=> CD = 113,96. tan   55 0 ≈ 162,75m

Vậy độ cao của máy bay so với mặt đất là 162,75m

3 tháng 8 2021

Nguyễn Văn Phú

Gọi C là vị trí của máy bay

Gọi CH là độ cao của máy bay so với mặt đất

=>CH\(\perp\)AB tại H

Ta có hình vẽ sau:

loading...

Xét ΔCBA có \(\widehat{CBA}+\widehat{CAB}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+30^0+40^0=180^0\)

=>\(\widehat{ACB}=110^0\)

Xét ΔABC có \(\dfrac{BA}{sinACB}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

=>\(\dfrac{400}{sin110}=\dfrac{AC}{sin40}=\dfrac{BC}{sin30}\)

=>\(AC\simeq273,62\left(m\right);BC\simeq212,84\left(m\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinACB\)

\(=\dfrac{1}{2}\cdot273,62\cdot212,84\cdot sin110\simeq27362,57\left(m^2\right)\)

Xét ΔACB có CH là đường cao

nên \(\dfrac{1}{2}\cdot CH\cdot AB=S_{ABC}\)

=>\(CH\cdot\dfrac{400}{2}=27362,57\)

=>\(CH\simeq136,81\left(m\right)\)

26 tháng 6 2018

Chọn C.

Phương pháp: 

Gắn hệ trục tọa độ, xác định tọa độ điểm M trên parabol y = x 2  để độ dài đoạn AM nhỏ nhất.

Cách giải:

Ta có bảng biến thiên sau:

Gọi giao điểm của đường nhìn thấy máy bay tại A và B là C.
Vẽ CH vuông góc AB

=>CH là độ cao của máy bay

góc ACB=180-40-32=108 độ

Xét ΔACB có

AB/sin C=AC/sinB=BC/sin A

=>400/sin108=AC/sin32=BC/sin40

=>\(AC\simeq222,9\left(m\right);BC\simeq270,3\left(m\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB\cdot sinC=\dfrac{1}{2}\cdot222.9\cdot270.3\cdot sin108\simeq28650,52\left(m^2\right)\)

Độ cao là:"

28650,52*2/400\(\simeq143\left(m\right)\)