A = ?
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
A = 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
A = 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
A = 1/90 - ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72)
A = 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9) A = 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9) A = 1/90 - ( 1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A= -79/90
Chi tiết từng bước luôn nha bạn !Chúc bạn học tốt ! Tick cho mình nhé
Đặt biểu thức cần tính là A. Ta có :
A = 9/10 -( 1/90 + 1/72 + ... + 1/2)
= 9/10 - { 1/( 9.10) + 1/(9.8) + ... + 1/( 2.1)}
= 9/10 - ( 1/9 - 1/10 + 1/8 - 1/9 + ...+ 1 - 1/2) ( 1/90 = 1/(9.10) = 1/9 - 1/10)
= 9/10 - ( 1 - 1/10)
A=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A=1/2-1/10
A=2/5
\(A=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{10}-\frac{1}{10}\right)\)\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(A=\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0\)
\(A=\frac{11}{22}-\frac{2}{22}\)
\(A=\frac{9}{22}\)
\(=\frac{9}{10.11}-\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{9}{10.11}-\frac{10-9}{9.10}-\frac{9-8}{8.9}-...-\frac{2-1}{1.2}\)
\(=\frac{9}{10.11}-\frac{10}{9.10}+\frac{9}{9.10}-...-\frac{2}{1.2}+\frac{1}{1.2}\)
\(=\frac{9}{10.11}-\frac{1}{9}+\frac{1}{10}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=\frac{9}{10.11}+\frac{1}{10}-1\)
\(=-\frac{9}{11}\)
A = 1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
A = 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
A = 1/90 - (1/1.2 + 1/2.3 + ... + 1/7.8 + 1/8.9)
A = 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
A = 1/90 - (1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A = -79/90
A = 1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
A = 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
A = 1/90 - (1/1.2 + 1/2.3 + ... + 1/7.8 + 1/8.9)
A = 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
A = 1/90 - (1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A = -79/90
bn vào link này nhé:https://olm.vn/hoi-dap/detail/49652619071.html
A = \(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
= \(\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+...+\frac{1}{6}+\frac{1}{2}\right)\)
= \(\frac{1}{90}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}\right)\)
= \(\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
= \(\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
= \(\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
= \(\frac{1}{90}-\frac{8}{9}\)
= \(-\frac{79}{90}\)
\(\text{Ta có: }\)\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+\frac{1}{6.5}+\frac{1}{5.4}+\frac{1}{4.3}+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=-\frac{81}{90}=-\frac{9}{10}\)
<=>
D = 1/90+1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2
D = 1/(1x2) + 1/(2x3) + 1/(3x4) + 1/(4x5) + 1/(5x6) + … + 1/(9x10)
D = 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 + …. + 1/9 – 1/10
D = 1 – 1/10
D = 9/10