Giải phương trình : \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\). Giúp mk với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge2\).
Với \(x\ge2\) ta có \(VP\le2;VT\ge2\).
Do đó nghiệm của pt là \(x=2\).
Ta có: \(x^2+4\left(\sqrt{1-x}+\sqrt{x+1}\right)-8=0\)
\(\Leftrightarrow-\left(x-1\right)\left(x+1\right)+4\left(\sqrt{1-x}+\sqrt{1+x}\right)-7\)
Đặt \(a=\sqrt{1-x}+\sqrt{1+x}\Rightarrow\left(1-x\right)\left(1+x\right)=\left(\frac{a^2-2}{2}\right)^2\). Khi đó phương trình trở thành:
\(-\left(\frac{a^2-2}{2}\right)^2-4a+7=0\)
\(\Leftrightarrow-a^4+4a^2-16a-32=0\)\(\Leftrightarrow\left(a-2\right)\left(-a^3-2a^2+16\right)=0\)
\(\Leftrightarrow a=2\).
Các bạn làm tiếp nhé, đoạn cuối phân tích đa thức thành nhân tử thì bài làm sẽ hợp lý hơn. Ở đây hơi vội nên mình bấm máy tính.
đặt \(a=\sqrt{x+3}\), \(b=\sqrt{x-1}\)
khi đó \(\sqrt{x^2+2x-3}=ab\) và \(4=a^2-b^2\)
PT: (a - b)(1 + ab) = a2 - b2 hay (a - b)(1 + ab) = (a - b)(a + b).
* a - b = 0 (tự giải).
* 1 + ab = a + b hay 1 + 2ab + (ab)2 = a2 + 2ab + b2
hay 1 + (x2 + 2x - 3) = (x + 3) + (x - 1) (tự giải)
mik rất muốn tl giúp bạn nhưng mik ms có hok lớp 8 thôi Ayakashi
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
\(x^2-x-4=2\sqrt{1}\left(x-1\right)\)
\(x^2-x4-1\sqrt{x1}\)
\(\frac{x^2+7^2xxy^2=x-1\left(x-1_{ }\right)}{x^2-x+xy1-2x4}\)
Giải dễ hiểu giúp mk được ko ạ???