K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Chọn A

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
1 tháng 1 2021

Đặt \(m=2018,\frac{\sin B+m\sin C}{m\cos B+\cos C}=\sin A\Leftrightarrow b+mc=a\left(m\cos B+\cos C\right)\)

\(\Leftrightarrow b+mc=\frac{m\left(a^2+c^2-b^2\right)}{2c}+\frac{a^2+b^2-c^2}{2b}\)

\(\Leftrightarrow2bc\left(b+mc\right)=mb\left(a^2+c^2-b^2\right)+c\left(a^2+b^2-c^2\right)\)

\(\Leftrightarrow2b^2c+2mbc^2=mba^2+mbc^2-mb^3+ca^2+cb^2-c^3\)

\(\Leftrightarrow\left(c+mb\right)\left(b^2+c^2-a^2\right)=0\Leftrightarrow a^2=b^2+c^2\)

Vậy tam giác ABC vuông tại A

Dễ dàng CM được \(S_{ABC}=6.S_{MBG}\Rightarrow bc=12.S_{MBG}\).Do vậy ta cần CM bc chia hết cho 12

( ta sử dụng tính chất của số chính phương)

- Số chính phương chia 3 chỉ dư 0 hoặc 1

- Số chính phương chia 4 chỉ dư 0 hoặc 1

- Số chính phương lẻ chia 8 chỉ dư 1

*) Ta thấy trong 2 số \(b^2,c^2\)có ít nhất 1 số chia hết cho 3. giả sử không có số nào trong 2 số đó chia hết cho 3. Khi đó mỗi số đều chia 3 dư 1. Do đó a2 chia 3 dư 2 ( trái với tính chất số chính phương)

Do 3 là số nguyên tố nên trong 2 số b,c có ít nhất 1 số chia hết cho 3 . (1)

*)Chứng minh trong 2 số b,c có ít nhất 1 số chia hết cho 4. giả sử không có số nào trong 2 số đó chia hết cho 4. Khi đó \(b=4m+r;c=4n+q;r,q\in\left\{1;2;-1\right\}\)

+ Nếu \(r,q\in\left\{1;-1\right\}\Rightarrow a^2\)chia 4 dư 2 ( vô lý)

+ Nếu \(r\in\left\{-1;1\right\},q=2\) hoặc ngược lại thì a2 là số lẻ và a2 chia 8 dư 5 ( vô lý)

+ Nếu r=q=2 thì \(a^2=4\left(2m+1\right)^2+4\left(2n+1\right)^2\Rightarrow\)a chẵn

Đặt \(a=2p\Rightarrow p^2=\left(2m+1\right)^2+\left(2n+1\right)^2\Rightarrow p^2\)chia 4 dư 2 ( vô lý)

Vậy trong 2 số b,c có ít nhất 1 số chia hết cho 4 (2)

Từ (1) và (2) => đpcm

a: vecto AB=(1;1)

vecto AC=(2;6)

vecto BC=(1;5)

b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)

\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)

\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)

=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)

c: Tọa độ trung điểm của AB là:

x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5

Tọa độ trung điểm của AC là;

x=(1+3)/2=2 và y=(-1+5)/2=4/2=2

Tọa độ trung điểm của BC là:

x=(2+3)/2=2,5 và y=(0+5)/2=2,5

d: ABCD là hình bình hành

=>vecto AB=vecto DC

=>3-x=1 và 5-y=1

=>x=2 và y=4

10 tháng 10 2023

loading...  loading...  

16 tháng 12 2023

Chị ơi giúp e cái này tìm 3  giá trị của x sao cho 0,6<x<0,61

17 tháng 12 2023

Gọi I là tâm đường tròn nội tiếp tam giác ABC

\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=0\)

Ta có:

\(A=\left|a\overrightarrow{MA}+b\overrightarrow{MB}+c\overrightarrow{MC}\right|=\left|\left(a+b+c\right)\overrightarrow{MI}+a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}\right|\)

   \(=\left|\left(a+b+c\right)\overrightarrow{MI}\right|=\left(a+b+c\right).MI\)

\(Amin\Leftrightarrow MImin\)

           \(\Leftrightarrow\) M trùng I