K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)

Vậy: A chia hết cho x (Với x ≠ 0)

30 tháng 7 2019

A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)

Vậy A chia hết (x + 5)(Với x ≠ -5)

27 tháng 11 2019

A=(x+1)(x+2)(x+3)(x+4)+24 chia hết cho x+5 mới Đúng

27 tháng 11 2019

Quên -24

6 tháng 8 2019

Ta có:\(\left(x+3\right)^2=\left(x+3\right)\left(x-3\right)\)

Xét \(x+3=0\Rightarrow x=-3\)

Xét \(x+3\ne0\) ta có:

\(x+3=x-3\)

\(\Rightarrow0=6\left(VL\right)\)

Vậy \(x=-3\)

a) 

(x + 3)2 = (x + 3)(x – 3)

⇔ (x + 3)2 - (x + 3)(x - 3) = 0

⇔ (x + 3)(x + 3 - x + 3) = 0

⇔ 6(x + 3) = 0

⇔ x = -3

Vậy: x = -3

b) Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t - 25)(t + 25)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

(x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)

Vậy: A chia hết cho x (Với x ≠ 0)

2 tháng 9 2019

Sai đề à bn?

Sửa lại đề:

a) (x + 5)2 = (x + 5)(x – 5)

\(\Leftrightarrow\)(x + 5)2 - (x + 5)(x - 5) = 0

\(\Leftrightarrow\)(x + 5)(x - 5 + x + 5) = 0

\(\Leftrightarrow\) (x + 5).10 = 0

\(\Leftrightarrow\) x + 5 = 0

\(\Leftrightarrow\) x = -5

Vậy: x = -5

2 tháng 9 2019

b, A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24 (*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết (x + 5)(Với x ≠ -5)

Vậy A chia hết (x + 5)(Với x ≠ -5)

24 tháng 10 2019

3x2+4x-7 ⇔ 3x\(^2\) -3x + 7x - 7 ⇔ 3x( x - 1 ) + 7 ( x - 1 )

⇔ (3x + 7 ) ( x - 1 )

\(\Leftrightarrow\left[{}\begin{matrix}3x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{3}\\x=1\end{matrix}\right.\)

25 tháng 10 2019

phân tích thành nhân tử thôi mà bn

11 tháng 11 2014

A=1 +3+3^2 +3^3+...+3^99

=(1+3)+3^2(1+3)+...+3^98(1+3)

=4+3^2.4+...+3^98.4

= 4(1+3^2+...+3^98)

Vì 4 chia hết cho 4 nên A chia hết cho 4 -_-

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3