Cho hàm số y = 2x + 3 có đồ thị ( d 1 ) và hàm số y = – x có đồ thị ( d 2 ).
b) Tìm tọa độ giao điểm của ( d 1 ) và ( d 2 ) bằng phép toán.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-3=-3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Lời giải:
a. Bạn tự vẽ đồ thị
b. PT hoành độ giao điểm:
$2x-3=\frac{1}{2}x$
$\Rightarrow x=2$
Khi đó: $y=\frac{1}{2}x=\frac{1}{2}.2=1$
Vậy tọa độ giao điểm của 2 đường thẳng là $(2;1)$
\(b,\text{PT hoành độ giao điểm: }\dfrac{1}{2}x=-x-6\\ \Leftrightarrow\dfrac{3}{2}x=6\Leftrightarrow x=4\Leftrightarrow y=2\Leftrightarrow A\left(4;2\right)\\ \text{Vậy }A\left(4;2\right)\text{ là giao điểm 2 đths}\)
b: Phương trình hoành độ giao điểm là:
2x+1=x+3
=>2x-x=3-1
=>x=2
Thay x=2 vào y=x+3, ta được:
y=2+3=5
a:
Bài 1:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x-3=x-1\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b, PT hoành độ giao điểm: \(2x-5=-\dfrac{1}{2}x\Leftrightarrow x=2\Leftrightarrow y=-\dfrac{1}{2}\cdot2=-1\)
\(\Leftrightarrow A\left(2;-1\right)\)
Vậy A(2;-1) là tọa độ giao điểm 2 đths
b: Toạ độ giao điểm của (d) và (d1) là:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x+5=-\dfrac{3}{2}x+1\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\y=\dfrac{1}{2}x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{1}{2}\cdot\left(-2\right)+5=5-1=4\end{matrix}\right.\)
Gọi ( x 0 , y 0 ) là tọa độ giao điểm của d 1 và d 2
Khi đó ta có:
( y 0 = 2 x 0 + 3 và y 0 = - x 0
⇒ - x 0 = 2 x 0 + 3 ⇔ 3 x 0 = -3 ⇔ x 0 = -1
⇒ y 0 = - x 0 = 1
Vậy tọa độ giao điểm của d 1 và d 2 là (- 1; 1)