Cho AB và AC là 2 tiếp tuyến của (O) với B, C là các tiếp điểm. Câu trả lời nào sau đây là sai?
A. AB = BC
B. AB = AC
C. AO là trục đối xứng của dây BC
D. ∠BAO = ∠CAO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
a: Xét tứ giácc ABOC có
góc OBA+góc OCA=180 độ
nen ABOC là tứ giác nội tiếp
b: Xét ΔCAO vuông tại C và ΔCDE vuông tại C có
góc CAO=góc CDE
Do đó: ΔCAO đồng dạng vơi ΔCDE
=>CA/CD=CO/CE
=>CA/CO=CD/CE
Xét ΔCAD và ΔCOE có
CA/CO=CD/CE
góc ACD=góc OCE
Do đo: ΔCAD đồng dạng với ΔCOE
a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC và OH là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
=>ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: OH*OA=OB^2=R^2 ko đổi
c: Xét ΔOBA vuông tại B có sin OAB=OB/OA=1/2
nên góc OAB=30 độ
=>góc BAC=60 độ
mà BA=AC
nên ΔBAC đều
góc BOC=180-60=120 độ
=>sđ cung nhỏ BC là 120 độ
=>sđ cung lớn BC là 360-120=240 độ
d: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
=>ΔCBD vuông tại B
=>DB//OA
Đáp án là A