Cho biểu thức :
A = 15 x - 11 x + 2 x - 3 + 3 x - 2 1 - x - 3 x + 3 x ≥ 0 ; x ≠ 1
a) Thu gọn biểu thức A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Thay x=0 vào A, ta được:
\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)
\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)
\(=\dfrac{11}{3}-2-1\)
\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)
A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)
Tiếp theo, kết hợp các thành phần tương tự:
A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3
Đơn giản hóa biểu thức:
A = -11x + 15/√x + 4
Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.
Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)
Dấu = xảy ra khi x=0
a) Ta có: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Đề có vấn đề theo tôi đề như sau :
\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)
Rheo tôi đề như vậy
mong xem lại đề
a) \(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11+3x+7\sqrt{x}-6-3+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{23\sqrt{x}+3x-20}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}-2}{\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) (ĐK: \(x\ne1;x\ge0\))
\(A=\dfrac{15\sqrt{x}-11}{x+3\sqrt{x}-\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\dfrac{15\sqrt{x}-11}{\sqrt{x}\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(15\sqrt{x}-11\right)-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{-\left(5\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(A=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(a,E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne\pm1\right)\)(Đề như này mới đúng!)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2x-2\sqrt{x}+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{7\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{5\sqrt{x}+2\sqrt{x}-2-5x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(5\sqrt{x}-5x\right)+\left(2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
Vậy...
\(b,\)Ta có:\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-15+17-5\sqrt{x}}{\sqrt{x}+3}=\frac{\left(-15-5\sqrt{x}\right)+17}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Vì \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\Rightarrow-5+\frac{17}{\sqrt{x}+3}\le\frac{2}{3}\Rightarrow E\le\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
x + 2 x - 3 = x - x + 3 x - 3 = x ( x - 1) + 3( x - 1) = ( x - 1)( x + 3)
a) Với điểu kiện x ≥ 0; x ≠ 1 ta có: