GTLN của B = -x-2021+10√x là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn dùng công thức này thôi : \(\left|a\right|\ge0\forall a\) ; mik chỉ gợi ý thôi bởi vì nó rất dễ
\(A=\dfrac{2021-x}{11-x}=\dfrac{11-x+2010}{11-x}=\dfrac{11-x}{11-x}+\dfrac{2010}{11-x}=1+\dfrac{2010}{11-x}\)
Để A đạt GTNN thì \(\dfrac{2010}{11-x}\) nhỏ nhất
\(\Rightarrow11-x=2010\Leftrightarrow x=-1999\)
Khi đó \(A=2\)
Để A đạt GTLN thì \(\dfrac{2010}{11-x}\) lớn nhất
\(\Rightarrow11-x=1\Leftrightarrow x=10\)
Khi đó \(A=2011\)
Vậy \(Min_A=2\) khi \(x=-1999\) và \(Max_A=2011\) khi \(x=10\)
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
a) \(y=1-2sinx\)
Ta có: \(-1\le sinx\le1\Rightarrow-2\le2sinx\le2\)
\(\Rightarrow2\ge-2sin2x\ge-2\)
\(\Rightarrow3\ge1-2sinx\ge-1\)
Vậy \(y_{max}=3,y_{min}=-1\)
Để \(T_{max}=\frac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Thì \(2020+\left|x-2018\right|_{min}\)
và \(-2\left|x-2018\right|-2021_{max}\)
Mà \(\left|x-2018\right|\ge0\forall x\Rightarrow-2\left|x-2018\right|\le0\)
\(\Rightarrow T_{max}\Leftrightarrow\left|x-2018\right|_{min}\)
\(\Rightarrow T_{max}=-\frac{2021}{2020}\Leftrightarrow\left|x-2018\right|=0\Leftrightarrow x=0\)
\(\)
a)\(51-\left(3+x\right)=26\\ \Leftrightarrow51-3-x=26\\ \Leftrightarrow x=51-3-26\\ \Leftrightarrow x=22\)
b)Ta có:\(Ư_{\left(24\right)}=\left\{1;2;3;4;6;8;12;24\right\}\)
mà x>10⇒x=\(\left\{12;24\right\}\)
c)\(5.2^2-\left(18:3+2021^0\right)=5.4-6=20-6=14\)
ai giúp tôi với
ĐKXĐ: \(x\ge0\)
\(B=-x-2021+10\sqrt{x}=-\left(x-10\sqrt{x}+25\right)-1996\)
\(=-\left(\sqrt{x}-5\right)^2-1996\le-1996\)
\(maxB=-1996\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)