M.n giải gấp cho e với
cho Tam giác abc ,điểm M nằm trong tam giác abc.gọi T là giao điểm của BM VÀ AC
cmr:MA CộngMb<ia CỌNG iB<CA CỌNG cB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png
Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)
Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)
Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)
Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)
\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)
Vậy AD, BK và CH đồng quy (đpcm)
Theo kết quả câu a và câu b
MA + MB < IB + IA < CA + CB nên MA + MB < CA + CB.
đề nhảm vãi. thừa cả đống giả thiết. C/m được AHCM là hình bình hành thì suy ra K là trung điểm AC
=> OK vuông góc AC dễ dàng thế thêm mấy cái kia làm gì vậy không hiểu.
Ba điểm B, I, C không thẳng hàng.
Xét bất đẳng thức tam giác trong ΔIBC:
IB < IC + CB
⇒ IB + IA < IA + IC + BC (cộng cả hai vế với IA)
hay IB + IA < CA + CB (vì IA + IC = AC)
tick rồi mk giải chi tiết cho