K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Số phần tử của không gian mẫu là n Ω = C 30 5 = 142506  

Gọi A là biến cố: “đề thi lấy ra là một đề thi tốt”.

Vì trong một đề thi “tốt” có cả ba câu dễ, trung bình và khó đồng thời số câu dễ không ít hơn 2 nên ta xét các trường hợp sau:

Ÿ Trường hợp 1: Đề thi gồm 3 câu dễ, 1 câu trung bình và 1 câu khó có C 15 1 C 10 1 C 5 1  cách.

Ÿ Trường hợp 2: Đề thi gồm 2 câu dễ, 2 câu trung bình và 1 câu khó có C 15 2 C 10 2 C 5 1  cách.

Ÿ Trường hợp 3: Đề thi gồm 2 câu dễ, 1 câu trung bình và 2 câu khó có C 15 2 C 10 1 C 5 2  cách.

Suy ra n A = C 15 3 C 10 1 C 5 1 + C 15 2 C 10 2 C 5 1 + C 15 2 C 10 1 C 5 2 = 56875  

Vậy xác suất cần tìm là P A = n A n Ω = 56875 142506 = 625 1566

Đáp án D

19 tháng 9 2018

Số cách chọn ra 10 câu hỏi bất kỳ trong số 20 câu hỏi đã cho là .

+ Tiếp theo ta đếm số cách chọn ra 10 câu hỏi mà không có đủ cả ba loại câu hỏi ở trên:

Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và trung bình:  cách.

Phương án 2: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và khó:  cách.

Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi trung bình và khó:  cách.

Từ đó suy ra số lượng đề thỏa mãn yêu cầu có thể lập được là:

 

Chọn A.

25 tháng 1 2016

495 chẳng biết đúng hay sai ? nhonhung

25 tháng 1 2016

10leuleu

25 tháng 1 2016

=56875 đề.

Chỉ có 2 trường hợp lập đề thi gồm 5 câu hỏi có đủ các câu khó, trung bình, dễ

Trường hợp 1: 2 câu dễ, 2 câu khó, 1 câu trung bình

Số đề dạng này:  C215C25C110=10500 đề

Trường hợp 2: 2 câu dễ, 1 câu khó, 2 câu trung bình

Số đề dạng này: C215C15C210=23625 đề 

Trường hợp 3: 3 câu dễ, 1 câu khó, 1 câu trung bình

Số đề dạng này: C315C15C110=22750 đề

Vậy có tất cả 10500+23625+22750=56875 đề 

 

11 tháng 5 2016

http://www.toanhocnhatrang.com/2015/05/bai-toan-so-298.html

11 tháng 5 2016

Gọi A là tập hợp cách chọn đề có 3 câu dễ, 1 câu khó, 1 câu trung bình.

B là tập hợp cách chọn đề có 2 câu dễ, 2 câu khó, 1 câu trung bình

C là tập hợp cách chọn đề có 2 câu dễ, 1 câu khó, 2 câu trung bình

D là tập hợp cách chọn đề thỏa mãn yêu cầu đề ra. Ta có:

D = A \(\cup\) B \(\cup\) C

ngoài ra A,B,C đôi một không giao nhau. Theo quy tắc cộng ta có

\(\left|D\right|\) = \(\left|A\right|\) + \(\left|B\right|\) + \(\left|C\right|\)                 (1)

Theo quy tắc nhân ta có

\(\left|A\right|\) = \(C_{15}^3\).\(C_5^1\).\(C_{10}^1\) = 22750

\(\left|B\right|\) = \(C_{15}^2\).\(C_5^2\).\(C_{10}^1\) = 10500

\(\left|C\right|\) = \(C_{15}^2\).\(C_5^1\).\(C_{10}^2\) = 23625

Thay vào (1) ta có \(\left|D\right|\) = 56875

Vậy có 56875 cách chọn đề kiểm tra.

10 tháng 2 2018

* Loại 1: Chọn 10 câu tùy ý trong 20 câu có C 20 10  cách.

* Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình và khó.

 +) Chọn 10 câu dễ và trung bình trong 16 câu có C 16 10  cách.

 +) Chọn 10 câu dễ và khó trong 13 câu có C 13 10  cách.

 +) Chọn 10 câu trung bình và khó trong 11 câu có C 11 10  cách.

Vậy có C 20 10 − C 16 10 + C 13 10 + C 11 10 = 176451  đề kiểm tra thỏa  mãn đầu bài

Chọn đáp án C

20 tháng 9 2017

19 tháng 9 2017

Đáp án D.

- Loại 1: Chọn 10 câu tùy ý có cách.

- Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình, khó.

+ Chọn 10 câu dễ và trung bình trong 16 câu có cách.

+ Chọn 10 câu dễ và khó trong 12 câu có cách.

+ Chọn 10 câu trung bình và khó trong 12 câu có cách.

Vậy số cách chọn đề kiểm tra theo yêu cầu đề bài là:

DD
29 tháng 3 2022

TH1: chọn \(1\)câu khó từ \(5\)câu: \(C^1_5\).

Chọn \(9\)câu trong đó có cả câu trung bình và câu dễ. 

Ta sử dụng phần bù. Số cách là: \(C^9_{45}-C^9_{20}-C^9_{25}\).

TH cách số câu khó từ \(2\)đến \(5\)ta làm tương tự. 

Khi đó có tổng số cách chọn \(10\)câu sao cho đủ 3 loại câu hỏi là: 

\(C^1_5\left(C^9_{45}-C^9_{20}-C^9_{25}\right)+C^2_5\left(C^8_{45}-C^8_{20}-C^8_{25}\right)+C^3_5\left(C^7_{45}-C^7_{20}-C^7_{25}\right)\)

\(+C^4_5\left(C^6_{45}-C^6_{20}-C^6_{25}\right)+C^5_5\left(C^5_{45}-C^5_{20}-C^5_{25}\right)=7052230625\)