Giai phuong trinh x=\(\sqrt{x-\frac{1}{x}}\)+\(\sqrt{1-\frac{1}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(DK:x\ge0\)
\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)
\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)
\(\Leftrightarrow x=1\)
Vay nghiem cua PT la \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ge\frac{1}{2}\)
Đề \(\Rightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}+8-2x^2-\left(\sqrt{2x-1}-\sqrt{3}\right)=0\)
Nhân liên hợp ta được:
\(\frac{\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{\left(\sqrt{2x-1}-\sqrt{3}\right)\left(\sqrt{2x+1}+\sqrt{3}\right)}{\sqrt{2x+1}+\sqrt{3}}=0\)
\(\Rightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{2x-1-3}{\sqrt{2x+1}+\sqrt{3}}=0\)
\(\Rightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(2-x\right)\left(2+x\right)-\frac{2x-4}{\sqrt{2x+1}+\sqrt{3}}=0\)
\(\Rightarrow\left(x-2\right)\left[\frac{-2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}\right]=0\)
mà \(-\frac{2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}< 0\)
=> x - 2 = 0 => x = 2
Vậy x = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(DKXD:x>0\)
\(PT\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x-4+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{x^2-4x+3}{2\left(x+1\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(\frac{1}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{1}{2\left(x+1\right)}\right)=0\)
\(\Rightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x\sqrt{x+\frac{3}{x}}=2\text{ }\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\left(\text{ }x-1\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy PT có 2 nghiệm \(x=1;x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xin lỗi bạn nhiều nhiều lắm mình không biết làm bài này vì mình chưa học
![](https://rs.olm.vn/images/avt/0.png?1311)
Đkiện: x <1 hoặc x \(\ge\frac{3}{2}\)
\(\sqrt{\frac{2x-3}{x-1}}=2\) (1)
(1) => \(\frac{2x-3}{x-1}=4\)
=> 2x - 3 = 4x - 4
<=> 2x - 4x = -4 + 3
<=> -2x = -1
<=> x = \(\frac{1}{2}\)( TMĐK)
Vậy x = \(\frac{1}{2}\)
b, Đkiện: x \(\ge\frac{3}{2}\)
(1) => \(\sqrt{2x-3}=2\sqrt{x-1}\)
=>2x - 3 = 4(x - 1)
<=> 2x -3 = 4x -4
<=> -2x = -1
<=> x = \(\frac{1}{2}\)(ko TMĐK)
Vậy pt vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
Điều kiện: \(x\ge\frac{1}{3}\)
Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)
\(\Rightarrow x=a^2+\frac{1}{3}\)
Ta suy ra phương trình tương đương với
\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)
\(\Leftrightarrow54a^4+30a^2+27a-13=0\)
\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)
Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)
\(\Rightarrow3a-1=0\)
\(\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)
\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{4}{9}\)