K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Trong tính chất của hình bình hành:

Định lí: Trong hình bình hành:

+ Các cạnh đối bằng nhau.

+ Các góc đối bằng nhau.

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường

20 tháng 12 2022

Câu 10:

góc A=180-130=50 độ

góc B=(180+50)/2=230/2=115 độ

góc C=180-115=65 độ

20 tháng 12 2022

có ai biết làm bài 11 ko a

a) Ta thấy : BAD = BCD = 120°( tính chất) 

Mà AB//CD ( ABCD là hình bình hành) 

=> ABC + BCD = 180° 

=> ABC = ADC = 60°

15 tháng 11 2021

Vì ABCD là hbh nên \(\widehat{A}=\widehat{C}=120^0\) và AB//CD

Do đó \(\widehat{B}=\widehat{D}=180^0-\widehat{A}=60^0\) (trong cùng phía)

 

12 tháng 10 2018

a) Xét hình bình hành ABCD có I, K là trung điểm của AB và DC nên IK là đường trung bình. Vậy thì IK = BC = AD.

Xét tứ giác ADKI có 4 cạnh bằng nhau nên nó là hình thoi.

b) Chứng minh tương tự, ta có KCBI là hình thoi.

Vậy thì KA là phân giác góc \(\widehat{DKI}\) , KB là phân giác góc \(\widehat{IKC}\)

Vậy nên \(\widehat{AKB}=\widehat{AKI}+\widehat{IKB}=\frac{1}{2}\widehat{DKI}+\frac{1}{2}\widehat{IKC}=\frac{1}{2}.180^o=90^o\)

Vậy \(\widehat{AKB}=90^o\)

c) Do AB = DC = 2 BC = 2AD nên chu vi hình bình hành bằng 6 lần BC. Vậy BC = 30 : 6 = 5 (cm)

AB = 2 x 5 = 10 (cm)

Do IKCB là hình thoi nên BK là phân giác góc IBC. Vậy nên \(\widehat{IBK}=60^o\) 

Suy ra IBK là tam giác đều hay KB = IK = BC = 5(cm)

Áp dụng định lý Pi-ta-go, ta có: \(AK=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

Vậy diện tích tam giác AKB bằng: \(\frac{1}{2}.5.5\sqrt{3}=\frac{25}{2}\sqrt{3}\left(cm^2\right)\)

Dễ thấy diện tích hình bình hành gấp đôi diện tích tam giác AKB nên \(S_{ABCD}=25\sqrt{3}\left(cm^2\right)\)

29 tháng 4 2017

A D M N P Q B C

Giải:

Ta có: \(\widehat{DAB}=120^0\left(gt\right)\) nên \(\widehat{ADC}=60^0\)

Đường phân giác của \(\widehat{A}\) cắt đường phân giác của \(\widehat{D}\) tại \(M\) thì \(\Delta ADM\) có hai góc bằng \(60^0\)\(30^0\) nên các đường phân giác đó vuông góc với nhau.

Lập luận tương tự chứng tỏ tứ giác \(MNPQ\)\(4\) góc vuông nên nó là hình chữ nhật.

Trong tam giác vuông \(ADM\) có:

\(DM=AD\sin\widehat{DAM}=b\sin60^0=\dfrac{b\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\) và có:

\(DN=DC\sin\widehat{DCN}=a\sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow MN=DN-DM=\left(a-b\right)\dfrac{\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\)\(CN=CD\cos60^0=\dfrac{a}{2}\)

Trong tam giác vuông \(BCP\)\(CP=CB\cos60^0=\dfrac{b}{2}\)

Vậy \(NP=CN-CP=\dfrac{a-b}{2}\)

Suy ra diện tích hình chữ nhật \(MNPQ\) là:

\(MN.NP=\left(a-b\right)^2\dfrac{\sqrt{3}}{4}\left(đvdt\right)\)

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

10 tháng 1 2023

`a)` Xét hbh `ABCD` có: `E,F` là tđ của `BC;AD`

   `=>EF` là đường trung bình của hbh `ABCD`

  `=>EF=AB=DC`  `(1)`

`@E;F` là trung điểm của `BC;AD=>{(BE=1/2BC=>BC=2BE),(AF=1/AD=>AD=2AF):}`

                     Mà `AD=2AB=BC`

  `=>AF=AB=BE`  `(2)`

Từ `(1);(2)=>AF=BE=AB=EF=>` T/g `ABEF` là hình thoi

`b)` C/m: `BEDF` là hbh chứ nhỉ?

Có: `AF=DF`

  Mà `AF=BE`

  `=>DF=BE` mà `DF //// BE`

 `=>` T/g `BEDF` là hbh

`c)` Xét `\triangle AFB` có: `AF=AB` và `\hat{A}=60^o`

 `=>\triangle AFB` đều `=>{(AF=BF),(\hat{AFB}=60^o ):}`

       Mà `AF=DF`

 `=>DF=BF`

 `=>\triangle DFB` cân

`=>\hat{BFD}+2\hat{FDB}=180^o`

`=>180^o -\hat{AFB}+2\hat{ADB}=180^o`

`=>180^o -60^o +2\hat{ADB}=180^o =>\hat{ADB}=30^o`

15 tháng 10 2021

Ta có:

\(\widehat{A}=\widehat{C}=50^o\)

\(\widehat{B}=\widehat{C}=130^o\)

15 tháng 10 2021

nhanh lên