1. Chứng minh rằng \(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}==2\cos\frac{\pi}{2^{n+1}}\)( n dấu căn)
2.Cho dãy số un = 3n – 1 2n + 1
a) Xác định 5 số hạng đầu tiên
b) số 17 15 là số hạng thứ mấy của dãy số
c) số 32 7 là số hạng thứ mấy của dãy số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Dãy đã cho hiển nhiên là dãy dương
Ta sẽ chứng minh dãy đã cho bị chặn trên bởi 2 hay \(u_n\le2\) với mọi n
- Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (đúng)
- Giả sử điều đó đúng với \(n=k\ge1\) hay \(u_k\le2\)
- Ta cần chứng minh với \(n=k+1\) cũng đúng
Hay \(u_{k+1}\le2\)
Ta có: \(u_{k+1}=\sqrt{2+u_k}\le\sqrt{2+2}=2\) (đpcm)
Vậy \(u_n\le2\)
Đặt \(v_n=\dfrac{1}{2}u_n\Rightarrow0< v_n\le1\) và \(\left\{{}\begin{matrix}v_1=\dfrac{\sqrt{2}}{2}=cos\left(\dfrac{\pi}{4}\right)\\2v_{n+1}=\sqrt{2+2v_n}\end{matrix}\right.\)
\(\Rightarrow4v_{n+1}^2=2+2v_n\Rightarrow v_n=2v_{n+1}^2-1\)
Do \(0< v_n\le1\) , đặt \(v_n=cos\left(x_n\right)\) với \(x_n\in\left(0;\pi\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{\pi}{4}\\cos\left(x_n\right)=2cos^2\left(x_{n+1}\right)-1=cos\left(2x_{n+1}\right)\end{matrix}\right.\)
\(\Rightarrow x_n=2x_{n+1}\Rightarrow x_{n+1}=\dfrac{1}{2}x_n\)
\(\Rightarrow x_n\) là CSN với công bội \(\dfrac{1}{2}\)
\(\Rightarrow x_n=\dfrac{\pi}{4}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{\pi}{2^{n+1}}\)
\(\Rightarrow v_n=cos\left(x_n\right)=cos\left(\dfrac{\pi}{2^{n+1}}\right)\)
\(\Rightarrow u_n=2v_n=2cos\left(\dfrac{\pi}{2^{n+1}}\right)\)
Dãy \(\dfrac{\pi}{2^{n+1}}\) giảm và thuộc \(\left(0;\dfrac{\pi}{2}\right)\) nên \(cos\left(\dfrac{\pi}{2^{n+1}}\right)\) tăng
Do đó dãy số đã cho là dãy tăng.
P/s: đây là cách làm hoàn chỉnh có thứ tự (nhược điểm là rất dài). Có 1 cách khác đơn giản hơn là bằng 1 phép màu nào đó ngay từ đầu bạn đưa ra ngay dự đoán công thức tổng quát của dãy số là \(2cos\left(\dfrac{\pi}{2^{n+1}}\right)\) rồi chứng minh nó bằng quy nạp cũng được. Như vậy sẽ rất ngắn, cả bài chỉ 4-5 dòng nhưng lời giải hơi đột ngột
Chọn B.
Ta có: u1 = 1; u2 = 3/2; u3 = 17/6; u4 = 227/34.
Ta chứng minh un > 0 bằng quy nạp.
Giả sử un > 0, khi đó:
Nên .
Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)
Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)
\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)
\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)