Cho a,b,c Cmr a+b/c + b+c/a + c+a/b > hoac = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Áp dụng cô si cho từng cặp
\(\frac{a}{c}+\frac{c}{a}\ge2;\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)
=>....
Dấu = xảy ra <=>a=b=c
\(a+b+c=1\\ \Rightarrow\left(a+b+c\right)^2=1\\ \left(a+b+c\right)^2\ge4a\left(b+c\right)\\ \Rightarrow1\ge4a\left(b+c\right)\\ \Rightarrow b+c\ge4a\left(b+c\right)^2\ge16abc\)
Áp dụng \(\left(x+y\right)^2\ge4xy\)
1 = (a + b+ c)^2 >= 4a(b + c)
<=> b +c >= 4a(b + c)^2
Mà (b + c)^2 >= 4bc
Vậy b + c >= 4a.4bc = 16abc
Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.
Nếu hiểu như bạn viết mà ko có dấu ngoặc trên tử (a+b); (b+c); (c+a) thì bdt ban đầu sai (ví dụ a=1;b=c=1/2: VT= 1+1+1/2+1/2+1/2+2 = 11/2 <6 ==> sai)
Có lẽ ý bạn này là chứng minh:
(a+b)/c + (b+c)/a + (c+a)/b >=6 với mọi a,b,c >0;
Nếu vậy, viết lại bdt dưới dạng:
a/c + b/c + b/a +c/a + c/b+ a/b >=6 (1); Ta sẽ chứng minh (1) đúng
Thật vậy, áp dụng Cauchy cho bộ 2 số a/c và c/a ta có:
a/c+ c/a >=2 (*)
tương tự :
b/c +c/b >= 2 (**)
c/a + a/c >=2 (***)
Cộng vế với vế 3 bất đẳng thức trên thu được
/c + b/c + b/a +c/a + c/b+ a/b >=6 - ĐPCM
dấu "=" <==> a=b=c;
Đặt \(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
\(\Rightarrow A=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{b}\right)\)
\(\Rightarrow A=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
\(\Rightarrow A\ge2+2+2=6\)(đpcm)