cho hình thang abcd có độ dài đaý lớn AB bằng 2 lần đáy nhỏ.gọi I là giao điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(S_{ABCD}=\dfrac{1}{2}\cdot AH\cdot\left(AB+CD\right)\)
=>\(\left(AB+3AB\right)\cdot\dfrac{1}{2}\cdot3=30\)
=>4AB=20
=>AB=5(m)
CD=3*AB=15(m)
2:
Xét ΔEAB có AB//CD
nên \(\dfrac{EA}{ED}=\dfrac{AB}{CD}\)
=>\(\dfrac{EA}{ED}=\dfrac{1}{3}\)
Xét ΔEAB và ΔEDC có
\(\widehat{E}\) chung
\(\dfrac{EA}{ED}=\dfrac{EB}{EC}\)
Do đó: ΔEAB đồng dạng với ΔEDC
=>\(\dfrac{S_{EAB}}{S_{EDC}}=\left(\dfrac{AB}{DC}\right)^2=\dfrac{1}{9}\)
=>\(\dfrac{S_{EAB}}{S_{ABCD}}=\dfrac{1}{8}\)
=>\(S_{EAB}=\dfrac{30}{8}=3,75\left(m^2\right)\)
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
a: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}\)
mà \(CD=\dfrac{AB}{2}\)
nên MA=MB=CD
Xét tứ giác AMCD có
AM//DC
AM=DC
Do đó: AMCD là hình bình hành
Xét tứ giác DCBM có
DC//BM
DC=BM
Do đó: DCBM là hình bình hành
b: DCBM là hình bình hành
=>DM//CB
=>\(\widehat{AMD}=\widehat{CBM}\)(hai góc đồng vị)
mà \(\widehat{CBM}=\widehat{ECD}\)(hai góc đồng vị, DC//AB)
nên \(\widehat{DMA}=\widehat{ECD}\)
Xét ΔEAB có DC//AB
nên \(\dfrac{ED}{EA}=\dfrac{DC}{AB}=\dfrac{1}{2}\)
=>\(ED=\dfrac{1}{2}EA\)
=>D là trung điểm của EA
=>ED=DA