cho hàm số y=f(x) thỏa mãn x(f).(x-2)=(x-4).f(x) với mọi giá trị của x. Hãy chứng minh rằng có ít nhất 2 giá trị của x để hàm số có giá trị =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)f\left(x+2\right)=\left(x-4\right)f\left(x-1\right)\)(1)
Thế \(x=4\)vào (1) ta được:
\(\left(4+1\right)f\left(4+2\right)=\left(4-4\right)f\left(4-1\right)\Leftrightarrow5f\left(6\right)=0\Leftrightarrow f\left(6\right)=0\)
Thế \(x=-1\)vào (1) ta được:
\(\left(-1+1\right)f\left(-1+2\right)=\left(-1-4\right)f\left(-1-1\right)\Leftrightarrow f\left(-2\right)=0\)
Vậy có ít nhất hai giá trị là \(x=6\)và \(x=-2\)để \(f\left(x\right)=0\).
Chọn A
Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau
Nhận thấy
Để tìm ta so sánh f(-1) và f(2)
Theo giả thiết,
Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0
Chọn D
Ta có 3x.f(x) - x 2 f ' ( x ) = 2 f 2 ( x )
Thay x = 1 vào ta được vì f(1) = 1 3 nên suy ra C = 2
Nên Ta có:
Khi đó, f(x) đồng biến trên [1;2]
Suy ra
Suy ra