Nêu cách giải phương trình trùng phương ax4 + bx2 + c = 0 (a ≠ 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Đặt ẩn phụ t = x 2 (1) (điều kiện t ≥ 0).
Khi đó phương trình đã cho tương đương với một phương trình bậc 2 ẩn t là:
a t 2 + b t + c = 0 ( 2 )
- Giải phương trình (2) để tìm t, so sánh với điều kiện.
- Thay giá trị t thỏa mãn vào (1) để tìm x.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Đáp án B
Ta có f x = f x v ớ i x ≥ 0 − f x v ớ i x < 0
Đồ thị hàm số y = f x được suy ra từ đồ thị hàm số y = f x gồm 2 phần:
- Phần 1: Phần phía bên trên trục hoành.
- Phần 2: Lấy đối xứng với phần phía dưới trục Ox qua trục Ox (bỏ đi phần phía dưới trục hoành).
Khi đó ta được đồ thị hàm số y = f x như sau:
Phương trình f x = log 3 m có 8 nghiệm phân biệt ⇔ 0 < log 3 m < 2 ⇔ 1 < m < 9
Đặt x2=t \(\left(t\ge0\right)\)
=> pt 1 trở thành at2 + bt +c =0 \(\left(2\right)\)
Để pt 1 cso 4 nghiệm phân biệt thì pt 2 phải có 2 nghiệm dương phân biệt
=>\(\left\{{}\begin{matrix}a\ne0\\\Delta>0\\S>0\\P>0\end{matrix}\right.\)
Đặt t = x 2 t ≥ 0
Phương trình (1) thành a t 2 + b t + c = 0 2
Phương trình (1) có 4 nghiệm phân biệt
⇔ phương trình (2) có 2 nghiệm phân biệt dương ⇔ Δ > 0 S > 0 P > 0
Đáp án cần chọn là: D
Đặt t = x 2 t ≥ 0
Phương trình (1) thành a t 2 + b t + c = 0 2
Phương trình (1) vô nghiệm
⇔ phương trình (2) vô nghiệm hoặc phương trình (2) có 2 nghiệm cùng âm
⇔ ∆ < 0 ⇔ Δ ≥ 0 S < 0 P > 0
Đáp án cần chọn là: B
- Đặt ẩn phụ t = x2 (1) (điều kiện t ≥ 0).
Khi đó phương trình đã cho tương đương với một phương trình bậc 2 ẩn t là:
at2 + bt + c = 0 (2)
- Giải phương trình (2) để tìm t, so sánh với điều kiện.
- Thay giá trị t thỏa mãn vào (1) để tìm x.