Cặp (x,y) thỏa mãn:
(x-3)2012+(3y-12)2014 <=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì: xn \(\ge0\)
=> (x - 3)2012 + (3y - 12)2014 = 0
=> x - 3 = 0 và 3y - 12 = 0
x - 3 = 0 => x = 3
3y - 12 = 0
3y = 12
y = 4
=> cặp (x;y) = (3;4)
Ta có:
(x - 3)2012 > 0 với mọi x
(3y - 12)2014 > 0 với mọi y
=> (x - 3)2012 + (3y - 12)2014 > 0 với mọi x; y
Để (x - 3)2012 + (3y - 12)2014 < 0 thì (x - 3)2012 + (3y - 12)2014 = 0
=> (x - 3)2012 = (3y - 12)2014 = 0 => x - 3 = 0 và 3y - 12 = 0
=> x = 3 và y = 12/3 = 4
Vậy x = 3; y = 4
=> x - 3 = 0 va 3y - 12 = 0
x = 3 ; y = 4
x;y = (3;4)
ta có:
(x-3)^2012 > 0 với mọi x
(3y-12)^2014 > 0 với mọi y
=>(x-3)^2012+(3y-12)^2014 > 0 với mọi x;y
mà theo đề:(x-3)^2012+(3y-12)^2014 < 0
=>(x-3)^2012=(3y-12)^2014=0
=>x-3=3y-12=0
=>x=3;y=4
vậy (x;y)=(3;4)
tick nhé,bài chuẩn đấy
vì: số mũ của cả 2 là số chẵn mà x2012 + x2014 \(\ge0\)
=> ( x - 3 )2012 + ( 3y - 12 )2014 \(\ge0\)
mà đề cko là bé hơn hoặc = 0 => ( x - 3 )2012 + ( 3y - 12 )2014 = 0
Vì ko có số đối => ( x - 3 )2012 = 0 và ( 3y - 12 )2014 = 0
để: x - 3 = 0 => x = 3
3y - 12 = 0
3y = 12
y = 4
=> cặp x;y thỏa mãn là: (3;4)
Vì \(\left(x-3\right)^{2012}\ge0\)
\(\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\hept{\begin{cases}3y-12=0\\x-3=0\end{cases}}\)\(\hept{\begin{cases}y=4\\x=3\end{cases}}\)
Vậy cặp( x,y) cần tìm là (3,4)
2 số hạng đều có số mũ chẵn nên chúng luôn lớn hơn hoặc=0
Vậy ta suy ra được cả 2 số đều bằng 0
Có (x-3)2012=0 =>x-3=0 =>x=3
Có ( 3y-12)2014=0 =>3y-12=0 =>3y=12 =>y=4
Vậy x=3, y=4
Ta có:
\(\left(x-3\right)^{2012}\)>=0
\(^{\left(3y-12\right)^{2014}}\)>=0
Mà \(\left(x-3\right)^{2012}\)+\(^{\left(3y-12\right)^{2014}}\)<=0
=>\(\left(x-3\right)^{2012}\)=0 =>X-3=0 =>x=3
=>\(^{\left(3y-12\right)^{2014}}\)=0 =>3y-12=0 =>3y=12 =>y=4
Vậy x=3;y=4