K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

Khi \(x\in R\)

1 tháng 11 2021

\(\sqrt{-x^2+2x-1}=\sqrt{-\left(x^2-2x+1\right)}=\sqrt{-\left(x-1\right)^2}\)

Do \(-\left(x-1\right)^2\le0\forall x\)

Nên căn thức chỉ xác định khi x=1

NV
19 tháng 1 2024

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\)

Quy tắc: tam thức bậc 2 ko đổi dấu khi \(\Delta< 0\) (có dấu = hay ko phụ thuộc đề yêu cầu \(f\left(x\right)\) có dấu = hay ko)

Khi đã có \(\Delta< 0\) thì dấu \(f\left(x\right)\) chỉ còn phụ thuộc a. Nếu a dương thì \(f\left(x\right)\) dương trên R, nếu a âm thì \(f\left(x\right)\) âm trên R.

19 tháng 1 2024

em cảm ơn ạ

2 tháng 9 2017

Ta có :\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+1}{x^2-1}\)

\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{x^2-1}\)

\(=\frac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

13 tháng 8 2021

2 D

3 C

4 B

5 C

13 tháng 8 2021

1 B

2 D

3 B

4 C

5 A

NV
14 tháng 9 2021

\(B_2=\left\{x;x=2k,k\in N\right\}\)

\(B_4=\left\{x;x=4m,m\in N\right\}\)

Do \(4m=2.\left(2m\right)\Rightarrow B_4\subset B_2\)

\(\Rightarrow B_2\cap B_4=B_4\)

1 tháng 11 2023

Bài `13`

\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)

1 tháng 11 2023

giải hết giùm em luôn được không ạ, em cảm ơn.

21 tháng 8 2023

Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)

\(=2ax^2-4bx+4+5x+c-11\)

\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)

\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)