a+8 a+8 a+8 a+8 =ab 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) [ 316 – ( 25 . 4 + 16 )] : 8 – 24
=( 316 – 116 ) : 8 – 24 = 200 ∶ 8 – 24 = 25 – 24 = 1
b) | -15| + (-27) + 8 + | - 23|
= 15 – 27 + 8 + 23 = 19
c) 5 8 : 5 6 + 2 2 . 3 3 - 2010 0 = 5 2 + 4 . 27 – 1 = 25 + 108 – 1 = 132
\(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c.a^8+b^8+c^8=3a^8=3\Leftrightarrow a^8=1\Leftrightarrow a=\pm1\Rightarrow a=b=c=1hoặca=b=c=-1\)
Ta có : 6a-33\(⋮\)a-8
\(\Rightarrow\)6a-48+15\(⋮\)a-8
\(\Rightarrow\)6(a-8)+15\(⋮\)a-8
Mà 6(a-8)\(⋮\)a-8 nên 15\(⋮\)a-8
\(\Rightarrow a-8\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
+) a-8=-1\(\Rightarrow\)a=7 (thỏa mãn)
+) a-8=1\(\Rightarrow\)a=9 (thỏa mãn)
+) a-8=-3\(\Rightarrow\)a=5 (thỏa mãn)
+) a-8=3\(\Rightarrow\)a=11 (thỏa mãn)
+) a-8=-5\(\Rightarrow\)a=3 (thỏa mãn)
+) a-8=5\(\Rightarrow\)a=13 (thỏa mãn)
+) a-8=-15\(\Rightarrow\)a=-7 (thỏa mãn)
+) a-8=15\(\Rightarrow\)a=23 (thỏa mãn)
Vậy a\(\in\){-7;3;5;7;911;13;23}
ta có 6a -33 chia hết cho a-8
=>6a-33+15-15 chia hết cho a-8
=>6a-48+15 chia hết cho a-8
Mà 6(a-8) chia hết cho a-8
=>15 chia hết cho a-8 (theo tính chất chia hết của 1 tổng)
=>a-8 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
ta có bảng
a-8 1 -1 3 -3 5 -5 15 -15
a 9 7 11 5 13 3 23 -7
Vậy a thuộc {9;7;11;5;13;3;23;-7}
Trên máy không kẻ bảng được bạn tự kẻ nhé !
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
ta có :\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà ta có: \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\) \(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\forall a,b,c\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=c\)
lại có:\(a^8+b^8+c^8=3\) mà \(a=b=c\)
\(\Rightarrow a^8+a^8+a^8=3\)
\(\Leftrightarrow a^8=1\)
\(\Leftrightarrow a=1\)
vậy \(a=b=c=1\)
a) \(A=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(A=2^{2010}\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(\text{A = 1 + 2 + . . . + 2^{2008} + 2^{2009}}\)
\(\text{⇒ 2 A = 2 + 2 2 + . . + 2^{2010}}\)
⇒ \(A=2^{2010}-1\)
⇒ \(A=2^{2010}-\left(2^{2010}-1\right)\)
⇒ \(A=1\)
b) \(B=2072\)
c) \(\dfrac{4949}{19800}\)
Xin lỗi mình không có nhiều thời gian để giải thích trên đây á nên tạm gửi ảnh mình tạo nhé . Học tốt !