tính A=\(\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+4+......+99}+\frac{1}{50}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
MT
2
1 tháng 1 2016
1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50
=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+...+1/(99+1).99:2+1/50
=2/2.3+2/3.4+2/4.5+...+2/99.100+1/50
=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50
=2.49/100+1/50=49/50+1/50=1
tick nha ^^
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)
\(=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=2.\left(\frac{50}{100}-\frac{1}{100}\right)+\frac{1}{50}=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=1\)
Ket qua la 1 con neu muon xem cach giai thi vao chtt