tìm x
căn 3x + 2 > 4 (đk x > -2/3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: ĐKXĐ: \(x\in R\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\)
ĐKXĐ: \(x\ge\frac{1}{3}\)
\(x^2+5x=x\sqrt{3x-1}+\left(x+1\right)\sqrt{5x}\)
\(\Leftrightarrow2x^2+10x-2x\sqrt{3x-1}-2\left(x+1\right)\sqrt{5x}=0\)
\(\Leftrightarrow\left(x^2-2x\sqrt{3x-1}+3x-1\right)+\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{5x}+5x\right]=0\)\(\Leftrightarrow\left(x-\sqrt{3x-1}\right)^2+\left(x+1-\sqrt{5x}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\sqrt{3x-1}=0\\x+1-\sqrt{5x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{3x-1}\\x+1=\sqrt{5x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3x-1\\\left(x+1\right)^2=5x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1=0\\x^2-3x+1=0\end{matrix}\right.\Leftrightarrow x=\frac{3\pm\sqrt{5}}{2}\left(tm\right)\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-5\end{matrix}\right.\)
b: ĐKXĐ: \(x=2\)
c: ĐKXĐ: \(x\ge4\)
\(\left|B\right|\)+3<2x-1
\(\Leftrightarrow\)\(\left[{}\begin{matrix}B+3< 2x-1\\-B+3< 2X-1\end{matrix}\right.\)
+ B+3<2x-1
\(\Leftrightarrow\)\(\dfrac{4-3x}{4}+3< 2x-1\)
\(\Leftrightarrow\dfrac{4-3x}{4}+\dfrac{12}{4}< 2x-1\)
\(\Leftrightarrow4-3x+12< 2x-1\)
\(\Leftrightarrow16-3x< 2x-1\)
\(\Leftrightarrow-5x< -17\)
\(\Leftrightarrow x>\dfrac{17}{5}\)
+ -B+3<2x-1
\(\Leftrightarrow\)\(\dfrac{-4+3x}{-4}\)+3<2x-1
\(\Leftrightarrow\dfrac{-4+3x}{-4}+\dfrac{-12}{-4}< 2x-1\)
\(\Leftrightarrow-4+3x-12< 2x-1\)
\(\Leftrightarrow x< 15\)
Vậy:ĐK của x để \(\left|B\right|+3< 2x-1\)
B=\(\dfrac{4-3x}{4}\)
\(\left(x|x>\dfrac{17}{5};x< 15\right)\)
Lời giải:
Ta có:
\(P=\int \frac{x^2-1}{x\sqrt{x^3+x}}dx=\int \frac{\frac{x^2-1}{x^2}}{\frac{\sqrt{x^3+x}}{x}}dx\)
\(=\int \frac{(1-\frac{1}{x^2})dx}{\frac{\sqrt{x^3+x}}{x}}=\int \frac{d\left(x+\frac{1}{x}\right)}{\frac{\sqrt{x^3+x}}{x}}\)
Đặt \(\frac{\sqrt{x^3+x}}{x}=t\Rightarrow t^2=\frac{x^3+x}{x^2}=x+\frac{1}{x}\)
Khi đó: \(P=\int \frac{d(t^2)}{t}=\int \frac{2tdt}{t}=\int 2dt=2t+c=\frac{2\sqrt{x^3+x}}{x}+c\)
\(\dfrac{3}{2}\sqrt{3x}-3x-5=-\dfrac{1}{2}\sqrt{3x}\left(đk:x\ge0\right)\)
\(\Leftrightarrow3x-2\sqrt{3x}+5=0\)
\(\Leftrightarrow\left(\sqrt{3x}-1\right)^2+4=0\)(vô lý do \(\left(\sqrt{3x}-1\right)^2+4\ge4>0\))
Vậy \(S=\varnothing\)
a,3/4 . (-5/12)+3/4.(-7/12)
` 3/4 . [ - ( 5/12 + 7/12 ) ] `
`3/4 . (-1) = -3/4 `
`2/3 . x - 0,5 = 3/4 `
` x - 0,5 = 3/4 - 2/3 `
` x-0,5 = 1/12 `
` x = 1/12 + 0,5 `
` x= 7/12 `
Bài 2:
a: =>2/3x=3/4+1/2=3/4+2/4=5/4
=>x=5/4:2/3=5/4*3/2=15/8
b:=>-2x+4=3x-12
=>-5x=-16
=>x=16/5
\(\Leftrightarrow3x+2>16\)
hay \(x>\dfrac{14}{3}\)