Giá trị của x trong tỉ lệ thức:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
nhanh nha các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tỷ lệ thức tương đương:
(2x+3)(10x+2) = (5x+2)(4x+5)
=> 20x2 + 30x + 4x + 6 = 20x2 + 8x + 25x +10
=> 20x2 + 30x + 4x - 20x2 - 8x - 25x = 10 - 6
=> x = 4
a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)
\(ĐK:3x^2-7x+2\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)
=> 3x2 + 5x + 2 =0
<=> 3x2 + 3x + 2x +2 = 0
<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0
<=> ( x + 1 )(3x + 2 ) =0
<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = -2/3
b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)
<=> 2x2+ 10x + 12 = 0
<=> x2 + 5x+ 6 =0
<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\)
Vậy x = -3
c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)
<=> x3 + x2 -x -1 =0
<=> ( x - 1 )(x2 + 2x + 1 )
<=> ( x-1 ) (x+1)2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = { 1 ; -1 }
a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)
<=> 3x^2 + 5x - 2 = 0
<=> (3x - 1)(x + 2) = 0
<=> 3x - 1 = 0 hoặc x + 2 = 0
<=> 3x = 1 hoặc x = -2
<=> x = 1/3 (ktm) hoặc x = -2 (tm)
=> x = -2
b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)
<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)
<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)
<=> 2(x + 3) = 0
<=> x + 3 = 0
<=> x = -3
c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)
<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)
<=> (x + 1)(x - 1) = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2\left(2x+3\right)-\left(4x+5\right)}{2\left(5x+2\right)-\left(10x+2\right)}=\frac{1}{2}\)
=> \(\frac{2x+3}{5x+2}=\frac{1}{2}\) => 2(2x+3) = 5x+ 2 => 4x + 6 = 5x + 2 => 6 - 2 = 5x - 4x => 4 = x
Vậy x = 4
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
Ta có: \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)
\(\Rightarrow20x^2+4x+30x+6=10x^2+25x+8x+10\)
\(\Rightarrow34x+6=33x+10\)
\(\Rightarrow34x-33x=-6+10\)
\(\Rightarrow x=4\)
Ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Rightarrow20x^2+34x+6=20x^2+33x+10\)
\(\Rightarrow\left(20x^2+34x+6\right)-\left(20x^2+33x+6\right)=\left(20x^2+33x+10\right)-\left(20x^2+33x+6\right)\)
\(\Rightarrow\left(20x^2-20x^2\right)+\left(34x-33x\right)+\left(6-6\right)=\left(20x^2-20x^2\right)+\left(33x-33x\right)+\left(10-6\right)\)
\(\Rightarrow x=4\)
Vậy x = 4.
<=>(2x+3)(10x+2)=(5x+2)(4x+5)
<=>2x(10x+2)+3(10x+2)=5x(4x+5)+2(4x+5)
<=>20x2+4x+30x+6=20x2+25x+8x+10
<=>34x+6=33x+10 (bỏ mỗi vế 20x2)
<=>34x-33x=-6+10
<=>x=4
Vậy x=4