Giá trị nguyên lớn nhất của thỏa mãn |2x-7|=7-2x là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-7\right|=7-2x\)
\(2x-7\le0\)
\(2x\le7\)
\(x\le\frac{7}{2}\)
\(x\le3,5\)
x = 3
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
a) 3 x − − 17 = 14 + 2 x ⇔ 3 x − 2 x = 14 + − 17 ⇔ x = − 3.
b) 2 x + 12 = 3 x – 7 ⇔ 2 x + 12 = 3 x – 3.7 ⇔ 2 x + 12 = 3 x − 21 ⇔ 2 x − 3 x = − 21 − 12 − x = − 33 ⇔ x = 33.
2 x + 12 = 3 x – 7 2 x + 12 = 3 x – 3.7 2 x + 12 = 3 x − 21 2 x − 3 x = − 21 − 12 − x = − 33 x = 33.
1) 7-x3-x2-x=7-x(x2-x-1) vì x(x2-x-1) phải bé hơn 7 nên Giá trị lớn nhất của biểu thức B là 7
2) (x-2)(2x+14)=0 ta đc x-2=0 và 2x+14=0
*Xét trường hớp 1: x-2=0 =>x=2
*Xét trường hợp 2: 2x+14=0 =>2x=-14 =>x= -7
Vậy x={2;-7}
Giá trị nguyên lớn nhất của x thỏa mãn |2x-7|=7-2x là 0,33333 phân số là : 1/3