Tìm tập xác định của hàm số y = 1 x khi x ≥ 1 x + 1 khi x < 1
A. D = [−1; + ∞ )∖{0}
B. D = R
C. D = [−1; + ∞ )
D. D = [−1; 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
a: TXĐ: D=R
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
+ Với x ≤ 0 thì ta có hàm số luôn xác định.
Do đó tập xác định của hàm số
+Với x> 0 thì ta có hàm số luôn xác định.
Do đó tập xác định của hàm số
Kết hợp cả 2 trường hợp; vậy tập xác định là
Chọn C.
a) Tìm tập xác định của hàm số trên.
\(f\left( x \right)\) có nghĩa khi x0.
=> Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).
b) Tính giá trị của hàm số khi \(x = - 1;x = 2022\)
Với \(x = - 1\), suy ta \(x < 0\)\( \Rightarrow y = - x = - \left( { - 1} \right) = 1\).
Với \(x = 2022\), suy ra \(x > 0\)\( \Rightarrow y = x = 2022\).
a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)
b)
Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)
Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)
c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne - 1\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).
Khi x<2 thì -3x>-6
=>-3x+8>2>0
=>\(y=\sqrt{-3x+8}+x\) luôn xác định khi x<2(1)
Khi x>=2 thì x+7>=9>0
=>\(f\left(x\right)=\sqrt{x+7}+1\) luôn xác định khi x>=2(2)
Từ (1),(2) suy ra tập xác định là D=R
Hàm số
có tập xác định: D = R.
y ' = x 2 + 2 ( m + 1 ) x - m - 1
Để hàm số đã cho đồng biến trên R khi và chỉ khi:
y ' = f ( x ) = x 2 + 2 ( m + 1 ) x - m - 1 ≥ 0 ∀ x ∈ R
⇔ -2 ≤ m ≤ -1
Chọn A
Đáp án là C.
• Txđ: D = ℝ
Với x < 4 ta có f x = a + 2 x 4 ⇒ f x liên tục trên − ∞ ; 4
Với x > 4 ta có : f x = 2 x + 1 − x + 5 x − 4 ⇒ f x = 2 x + 1 − x + 5 x − 4 liên tục trên 4 ; + ∞
• Tại x >4 ta có: f 4 = a + 2
Ta có lim x → 4 − f x = lim x → 4 − a + 2 x 4 = a + 2
lim x → 4 + f x = lim x → 4 + 2 x + 1 − x + 5 x − 4 = lim x → 4 + 1 2 x + 1 + x + 5 = 1 6
Để hàm số f x liên tục trên ℝ khi hàm số f x liên tục tại x = 4 thì
lim x → 4 − f x = lim x → 4 + f x = f 4 ⇔ a + 2 = 1 6 ⇔ a = − 11 6
Đáp án C