K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

B=3(1+3+9+27)+....+3^97(1+3+9+27)

B=3.40+...+3^97.40

B=40(3+...+3^97) chia hết cho 40

Vì B chỉ toàn các thừa số có cơ số là 3 nên chia hết cho 3

Vì B chia hết cho 3 và 40 mà 3 và 40 là 2 số nguyên tố cùng nhau nên a chia hết cho 3.40=120 

Vậy B chia hết cho 120

20 tháng 4 2018

\(A=3+3^2+3^3+3^4+.......+3^{100}\)

\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=3.40+.........+3^{97}.40\)

\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)

\(\Rightarrow A⋮40\)( 1 )

Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)

\(\Rightarrow A⋮120\)

Vậy \(A⋮120\)( ĐPCM )

25 tháng 9 2016

mình ko biết

5 tháng 2 2021

phải là chứng minh A chia hết cho 121

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Lời giải:
$B=3+(32+33+...+3100)$

$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$

Bạn xem lại đề.

3 tháng 10 2021

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

3 tháng 10 2021

B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13

1 tháng 11 2023

\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)

Mặt khác: \(2B+3=3^n\)

\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)

Vậy n = 101.

1 tháng 11 2023

cảm ơn bạn nha :))

13 tháng 11 2021

A=2+22+23+...+299+2100A=2+22+23+...+299+2100

⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101

⇒A=2101−2⇒A=2101−2

B=3+32+33+...+399+3100B=3+32+33+...+399+3100

⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101

⇒2B=3101−3⇒2B=3101−3

⇒B=3101−32

18 tháng 10 2023

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

18 tháng 10 2023

.

23 tháng 6 2023

  a,

S  =     1 -  3 + 32 - 33+...+398 - 399

S  =   30 - 31 + 32 - 33+...+ 398 - 399

xét dãy số: 0; 1; 2; 3;...;99 

Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1

Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)

100 : 4 = 25

Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì: 

S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)

S = - 20+...+ 396.(1 - 3 + 32 - 33)

S = - 20 +...+ 396.(-20)

S = -20.( 30 + ...+ 396) (đpcm)

b,

  S           = 1 - 3 + 32 - 33+...+ 398 - 399

3S          =      3  - 32 + 33-...-398  + 399 - 3100

3S + S   =    - 3100 + 1

4S        = - 3100 + 1 

 S        = ( -3100 + 1): 4

S        = - ( 3100 - 1) : 4

Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)