Trong mp Oxy, cho đường tròn (C): x 2 + y 2 – 4x + 2y + 1 = 0. Phương trình của đt (C’) đối xứng với (C) qua trục hoành
A. x 2 + y 2 + 4 x − 2 y + 1 = 0
B. x 2 + y 2 − 4 x − 2 y + 1 = 0
C. x 2 + y 2 + 4 x + 2 y + 1 = 0
D.Đápán khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d' là đường thẳng qua M và vuông góc d
\(\Rightarrow\) d' nhận (2;1) là 1 vtpt
Phương trình d':
\(2\left(x-1\right)+1\left(y-0\right)=0\Leftrightarrow2x+y-2=0\)
Gọi A là giao điểm của d và d' \(\Rightarrow\) tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}x-2y=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(\dfrac{4}{5};\dfrac{2}{5}\right)\)
Gọi M' là điểm đối xứng M qua d \(\Rightarrow A\) là trung điểm MM'
\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_A-x_M=\dfrac{3}{5}\\y_{M'}=2y_A-y_M=\dfrac{4}{5}\end{matrix}\right.\)
Vậy \(M'\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)
a) d 1 : 3x + 2y + 6 = 0
b) Giao của d và Δ là A(2;0). Lấy B(0; −3) thuộc d. Ảnh của B qua phép đối xứng của đường thẳng Δ là B′(5;2). Khi đó d' chính là đường thẳng AB′: 2x − 3y – 4 = 0
Đáp án D
(C) có tâm I( 1; – 1), bán kính 1
Đ O y : I => I’( – 1; – 1 )
Phương trình đường tròn (C’): ( x + 1 ) 2 + ( y + 1 ) 2 = 1
Đáp án B