x^5-x^3+x^2-1
Giải nhanh giúp mình với, cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
\(\dfrac{3}{2}\)(\(x\) - \(\dfrac{5}{3}\)) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\) \(x\) - \(\dfrac{15}{6}\) - \(\dfrac{4}{5}\) = \(x\) + 1
\(\dfrac{3}{2}\)\(x\) - \(x\) = 1 + \(\dfrac{15}{6}\) + \(\dfrac{4}{5}\)
\(\dfrac{1}{2}\)\(x\) =\(\dfrac{43}{10}\)
\(x\) = \(\dfrac{43}{10}\) \(\times\) 2
\(x\) = \(\dfrac{43}{5}\)
\(\dfrac{3}{2}\left(x-\dfrac{5}{3}\right)-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3.\left(x-\dfrac{5}{3}\right)}{2}-\dfrac{4}{5}=x+1\\ \Rightarrow\dfrac{3x-5}{2}-\dfrac{4}{5}=x+1\Rightarrow\dfrac{5\left(3x-5\right)}{10}-\dfrac{8}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1\\ \Rightarrow\dfrac{15x-33}{10}-x=x+1\\ \Rightarrow\dfrac{15x-33}{10}=x+1-x\\ \Rightarrow5x-33=10\\ \Rightarrow5x=10+33\\\Rightarrow5x=43\\ \Rightarrow x=\dfrac{43}{5} \)
a)Ta có:5/3.x^2-1/2.x^2y
=(5/3-1/2).x^2y
= 7/6.x^2y(Bậc 3)
b)Ta có: 7/6.(-2)^2(-1)
= 7/6.4.(-1)
= 7/6.(-4)
=-28/6
a, - A=\(\dfrac{5}{3}\).x2.y-\(\dfrac{-1}{2}\).x2.y
=\(\dfrac{13}{6}\).x2.y
- Bậc= 3.
b, A=\(\dfrac{13}{6}\).(-2)2.(-1)
=\(\dfrac{13}{6}\).4.(-1)
=\(\dfrac{-26}{3}\)
a) \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\dfrac{x-5+2x+10-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{1}{x+5}\)
b) \(A=-3\Rightarrow\dfrac{1}{x+5}=-3\)
\(\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}-5=\dfrac{-16}{3}\)
\(9x^2-42x+49=\left(3x-7\right)^2=\left(3.\dfrac{-16}{3}-7\right)^2=\left(-23\right)^2=529\) \(\left(x=\dfrac{-16}{3}\right)\)
\(a,x+\dfrac{3}{7}=\dfrac{2}{5}+\dfrac{3}{10}\)
\(x+\dfrac{3}{7}=\dfrac{4}{10}+\dfrac{3}{10}\)
\(x+\dfrac{3}{7}=\dfrac{7}{10}\)
\(x=\dfrac{7}{10}-\dfrac{3}{7}\)
\(x=\dfrac{49}{70}-\dfrac{30}{70}\)
\(x=\dfrac{19}{70}\)
\(b,\dfrac{19}{20}-x=\dfrac{8}{5}-\dfrac{3}{4}\)
\(\dfrac{19}{20}-x=\dfrac{32}{20}-\dfrac{15}{20}\)
\(\dfrac{19}{20}-x=\dfrac{17}{20}\)
\(x=\dfrac{19}{20}-\dfrac{17}{20}\)
\(x=\dfrac{2}{20}\)
\(x=\dfrac{1}{10}\)
#Urushi☕
`a)25/(x+1)-1 1/6=-1/3-0,5`
`=>25/(x+1)=-1/3-1/2+1+1/6`
`=>25/(x+1)=1/3`
`=>75=x+1`
`=>x=74`
Vậy `x=74`
`b)(2x+25 3/5)^2-9/25=0`
`=>(2x+128/5)=9/25`
`**2x+128/5=3/5`
`=>2x=-125/5=-25`
`=>x=-25/2`
`**2x+128/5=-3/5`
`=>2x=-131/5`
`=>x=-131/10`
\(\left|x^2-1\right|=2x+1\left(dk:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\le-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+1\\x^2-1=-2x-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1-2x-1=0\\x^2-1+2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-2=0\\x^2+2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-2+3=3\\x.\left(x+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1^2\right)-\left(\sqrt{3}\right)^2=0\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1-\sqrt{3}\right).\left(x-1+\sqrt{3}\right)=0\\\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1-\sqrt{3}\left(loai\right)\\x=1+\sqrt{3\left(loai\right)}\end{matrix}\right.\\\left[{}\begin{matrix}x=0\left(loai\right)\\x=-2\left(tm\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy x = -2
\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)
\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)
\(\Leftrightarrow2x^2+5=0\)(vô lý)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)
\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)
Vậy pt vô nghiệm
\(x^5-x^3+x^2-1=x^3\left(x^2-1\right)+\left(x^2-1\right)=\left(x^2-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x+1\right)^2\left(x^2-x+1\right)\)