K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Theo đề, ta có: c=4

Theo đề, ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\-\dfrac{b^2}{16a}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2+80a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-20\\b=40\end{matrix}\right.\)

26 tháng 10 2021

Vì parabol đi qua \(I\left(-2;1\right)\) nên \(\left\{{}\begin{matrix}\dfrac{b}{2a}=2\\-\dfrac{\Delta}{4a}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-b=0\\b^2-4ac-4a=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=4a\\16a^2-4ac-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a-c=1\left(a\ne0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a=1+c\end{matrix}\right.\)

Mà parabol cắt \(y=x-1\) tại 1 điểm trên trục tung nên \(x=0\Leftrightarrow y=1\)

\(\Leftrightarrow c=1\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\)

Vậy parabol là \(y=\dfrac{1}{2}x^2+2x+1\)

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

Đỉnh của đths là $(\frac{-b}{2a}, 4-\frac{b^2}{4a})=(1,-2)$

$\Rightarrow \frac{-b}{2a}=1; 4-\frac{b^2}{4a}=-2$

$\Rightarrow -b=2a; b^2=24a$

$\Rightarrow a=0$ hoặc $a=6$

Nếu $a=0$ thì $b=-2a=0$. Khi đó đths $y=4$ là đường thẳng song song với trục hoành, không có đỉnh I(1,-2)$

Nếu $a=6$ thì $b=-2a=-12$. Khi đó: $a+3b=6+3(-12)=-30$

24 tháng 8 2018

Đáp án: B (có thể kiểm tra trực tiếp)

27 tháng 7 2017

Đáp án là C

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

24 tháng 2 2017

Đáp án: A (kiểm tra hoành độ đỉnh x = (-b)/2a; sai đó kiểm tra tung độ đỉnh)

24 tháng 12 2019

Chọn C.