Cho tam giác ABC, trên BC lấy M bất kì. Qua M kẻ ME//AC CE thuộc AB ; MF//AB (F thuộc AC). Gọi I là trung điểm AM.
Chứng Minh: E đối xứng với F qua I.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
Do MD//AB và \(AB\perp AD\) nên \(MD\perp AD\) hay \(\widehat{ADM}=90^o\). Hoàn toàn tương tự, ta có \(\widehat{AEM}=90^o\). Mà \(\widehat{DAE}=90^o\) nên tứ giác ADME là hình chữ nhật. Do đó \(DE=AM\). Như vậy, ta quy về tìm vị trí của M trên BC để AM nhỏ nhất. Kẻ đường cao AH của tam giác ABC thì H cố định. Ta thấy AH và AM lần lượt là đường vuông góc và đường xiên kẻ từ A lên BC nên \(AM\ge AH\). Dấu "=" chỉ xảy ra khi \(M\equiv H\) hay M là chân đường vuông góc hạ từ A lên BC.
Vì ME//AC và MF//AB nên AEMF là hbh
Mà I là trung điểm AM nên I là trung điểm EF
Do đó E đx F qua I