Cầu thang có n bậc thang được đánh số từ 1 đến n. Mỗi bước thầy Tiến có thể đi lên 1 bậc thang, 2 bậc thang hoặc 3 bậc thang. Hỏi nếu thầy Tiến ở chân cầu thang thì có bao nhiêu cách thầy Tiến đi lên hết cầu thang với n = 47. Ví dụ: n = 2 thì có 2 cách, n = 4 thì có 7 cách.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 9 2016
Gọi \(S_n\) là cách thỏa ycđp
Muốn lên và xuống thang n bậc \(\left(n>3\right)\) có 3 cách :
- Bước tới bậc n-1 rồi bước 1 bậc để lên n và xuống 1 bậc: 1 cách.
- Bước tới bậc n-2 rồi bước 2 bậc để lên n, sau đó xuống 2 bậc hoặc bước lên tửng bậc, xuống từng bậc hoặc xuống 2 bậc: 3 cách.
- Bước tới bậc n-3 để lên n rồi xuống thang: 9 cách (lấy theo VD cho nhanh).
Ta có hệ thức truy hồi, với \(n>3\)3
\(S_n=S_{n-1}+S_{n-2}+S_{n-3}\)
Khởi tạo : \(S_1=1,S_2=3,S_3=9\)
Suy ra : \(S_{11}=157+289+531=977\) cách .
Gọi Sn là số cách thỏa ycđb.
Muốn lên và xuống thang n bậc (n>3) có 3 cách:
- Bước tới bậc n-1 rồi bước 1 bậc để lên n và xuống 1 bậc: 1 cách.
- Bước tới bậc n-2 rồi bước 2 bậc để lên n, sau đó xuống 2 bậc hoặc bước lên tửng bậc, xuống từng bậc hoặc xuống 2 bậc: 3 cách.
- Bước tới bậc n-3 để lên n rồi xuống thang: 9 cách (lấy theo VD cho nhanh).
Ta có hệ thức truy hồi, với n>3:
Sn=Sn−1+Sn−2+Sn−3
Khởi tạo: S1=1,S2=3,S3=9
Suy ra: S11=157+289+531=977 cách.
bài này khó mình làm thế có đúng ko