Cho tứ giác ABCD; E,F,G,H lần lượt là trung điểm của AB,BC,CD,AD.Hỏi EFGH là hình gì?Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD là hình bình hành”
Đúng vì mỗi hình chữ nhật đều là hình bình hành.
b) Mệnh đề \(P \Rightarrow Q\) là: “Nếu tứ giác ABCD là hình thoi thì tứ giác ABCD là hình vuông”
Sai vì hầu hết các hình thoi không là hình vuông
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Xét \(\Delta ABC\)có E và F lần lượt là trung điểm của AB, BC (gt)
\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)(tính chất đường trung bình trong tam giác)
Chứng minh tương tự, ta cũng có \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)
Từ đó dễ thấy \(\hept{\begin{cases}EF//GH\left(//AC\right)\\EF=GH\left(=\frac{1}{2}AC\right)\end{cases}}\)
Xét tứ giác EFGH có EF//GH (cmt) và EF = GH (cmt) \(\Rightarrow\)Tứ giác EFGH là hình bình hành (dấu hiệu nhận biết)