ch tam giác ABC có góc A = 90 , BÉ là pg của góc ABC lấy h thuộc BC, BH=AB kẻ HF vuông góc AB tại F cho 0 là trung điểm của EF trên tia đối của tia AE lấy I EI=HF c/m H,O,I thẳng hàng
help me
làm hẳn ra
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEH có
AB vừa là đường cao, vừa là trung tuyến
=>ΔAEH cân tại A
=>AE=AH
b: Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
=>ΔAHF cân tại A
=>AH=AF=AE
c: HF⊥AB
AC⊥AB
Do đó:HF//AC
a: Xét ΔABE và ΔHBE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
Do đó: ΔABE=ΔHBE
https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée
Xét \(\Delta ABM\)và\(\Delta ECM\)có :
\(M_1=M_2\)(đối đỉnh)
\(BM=CM\)(gt)
\(AM=EM\)(gt)
\(=>\Delta ABM=\Delta ECM\)(c.g.c)
b,Do \(\Delta ABM=\Delta ECM\)(câu a)
\(=>A=E\)
\(=>AB//EC\)(so le trong)
c, Do \(HF\)là tia đối của tia \(HA\)(1)
Mà\(AHB=90^0\)(2)
Từ (1) và (2) => \(FHB=AHB=90^0\)
Xét \(\Delta AHB\)và \(\Delta FHB\)có :
\(AH=FH\)(gt)
\(HB\)(cạnh chung)
\(AHB=FHB\)(c/m trên)
\(=>\Delta AHB=\Delta FHB\)(c.g.c)
\(=>ABH=FBH\)
\(=>ĐPCM\)
P/S: Chưa check lại và chưa ghi dấu nón cho góc =))
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a) Xét ΔBHA vuông tại H và ΔBHC vuông tại H có
BA=BC(ΔBAC cân tại B)
BH chung
Do đó: ΔBHA=ΔBHC(cạnh huyền-cạnh góc vuông)
Suy ra: HA=HC(Hai cạnh tương ứng)
hay H là trung điểm của AC
b) Ta có: ΔBHA=ΔBHC(cmt)
nên \(\widehat{ABH}=\widehat{CBH}\)(hai góc tương ứng)
hay \(\widehat{EBH}=\widehat{FBH}\)
Xét ΔEBH vuông tại E và ΔFBH vuông tại F có
BH chung
\(\widehat{EBH}=\widehat{FBH}\)(cmt)
Do đó: ΔEBH=ΔFBH(cạnh huyền-góc nhọn)
Suy ra: BE=BF(hai cạnh tương ứng)
hay ΔBFE cân tại B