Cho ΔABC nhọn, kẻ đường cao BD và CE, vẽ các đường cao DF và EG của ΔADE. Xét các cặp tam giác sau đây, số cặp tam giác đồng dạng với nhau là:
(1) ΔAEG và ΔABD
(2) ΔADF và ΔACE
(3) ΔABC và ΔAEC
A. 1
B. 0
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD và ΔAEG, ta có:
BD ⊥ AC (BD là đường cao)
EG ⊥ AC (EG là đường cao)
=> BD // EG
Theo định lý Talet, ta có: A E A B = A G A D = E G B D
=> ΔAEG đồng dạng ΔABD (c - c - c) (đpcm)
Đáp án: A
Hình Tự Vẽ
Xét \(\Delta AEC\)và \(\Delta ADB\)có :\(\widehat{A}\)chung :\(\widehat{E}\)=\(\widehat{D}\)\(\Rightarrow\)\(\Delta AEC\)\(\approx\)\(\Delta ADB\)\(\Rightarrow\)\(\widehat{ABD}\)=\(\widehat{ACE}\)
Xét \(\Delta HDC\)và \(\Delta HEB\)có : \(\widehat{D}\)=\(\widehat{C}\); \(\widehat{HCD}\)=\(\widehat{HBE}\)\(\Rightarrow\)\(\Delta HDC\)\(\approx\)\(\Delta HEB\)\(\Rightarrow\)\(\frac{HB}{HC}\)= \(\frac{HE}{HD}\)\(\Rightarrow\)HB.HD=HC.HE
a) Xét tam giác ADB và tam giác AEC có:
Chung DAB; 2 góc vuông ADB=AEC=90 độ (có 2 đường cao BD, CE lần lượt hạ từ B; C xuống)
=> Đồng dạng theo TH gg
b; c) Có: BEC=BDC=90 độ
=> Tứ giác BCDE nội tiếp
=> góc HDE= góc ECB (tính chất)
=> tam giác HDE đồng dạng tam giác HCB (gg)
=> \(\frac{HD}{HE}=\frac{HC}{HB}\)
=> \(HD.HB=HC.HE\)(ĐPCM)
d) Xét tứ giác ADHE có: góc ADH=góc AEH=90 độ
=> góc ADH + góc AEH=90+90=180 độ
=> Tứ giác ADHE nội tiếp
=> góc AHD=góc AED (tính chất) (*)
Có tứ giác BCDE nội tiếp (cmt) => góc AED=góc ACB (tính chất) (**)
Từ (*) và (**) => góc ACB=góc AHD.
=> Tam giác DHA đồng dạng tam giác DCB (gg) khi có \(\hept{\begin{cases}ACB=AHD\left(cmt\right)\\ADH=BCD=90\end{cases}}\)
=> \(\frac{DH}{DA}=\frac{DC}{DB}\)
=> \(DH.DB=DA.DC\)(ĐPCM)
e) Đề bài sai nhé (CM đồng dạng chứ ko phải là CM bằng nhau)
Có: góc AED=góc ACB (cmt)
Và có chung góc DAE
=> Tam giác ADE đồng dạng tam giác ACB (gg)
=> ĐPCM
Từ câu trước ta có: A E A B = A G A D => AE.AD = AB.AG (1)
Chứng minh tương tự, ta được: ΔAFD ~ ΔAEC (c - c - c)
=> => AF.AC = AE.AD (2)
Từ (1) và (2) ta có: AD.AE = AB.AG = AC.AF
Đáp án: B
Từ câu trước ta có: A E A B = A G A D = E G B D => AE.AD = AB.AG (1) nên A đúng
Chứng minh tương tự, ta được: ΔAFD ~ ΔAEC (c - c - c)
=> A F A E = A D A C => AF.AC = AE.AD (2) nên B đúng
Ngoài ra A D A C = F D E C => AD.EC = AC.FD nên C đúng
Chỉ có đáp án D sai vì A E E G = A B B D
Đáp án: D
a, Xét tam giác ABD và tam giác ACE
^A _ chung
^ADB = ^AEC = 900
Vậy tam giác ABD ~ tam giác ACE (g.g)
b, Xét tam giác CBD và tam giác CAK ta có
^C _ chung
^CDB = ^CKA = 900
Vậy tam giác CDB ~ tam giác CKA (g.g)
\(\dfrac{CD}{CK}=\dfrac{CB}{CA}\Rightarrow CD.CA=CB.CK\)
c, Xét tam giác KDC và tam giác ABC
^C _ chung
\(\dfrac{DC}{BC}=\dfrac{KC}{AC}\)( tỉ lệ thức tỉ số đồng dạng )
Vậy tam giác KDC ~ tam giác ABC (c.g.c)
Xét ΔABD và ΔAEG, ta có:
BD ⊥ AC (BD là đường cao)
EG ⊥ AC (EG là đường cao)
=> BD // EG
Theo định lý Talet, ta có: A E A B = A G A D = E G B D
=> ΔAEG ~ ΔABD (c - c - c) nên (1) đúng.
Tương tự ta cũng chứng minh được ΔADF ~ ΔACE nên (2) đúng
Dễ thấy (3) sai vì A E A B ≠ A C A C
Vậy có hai cặp tam giác đồng dạng trong các cặp đã nêu.
Đáp án: C