K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Gọi I, K lần lượt là hình chiếu của H lên AB và AC.

⇒ H I A ^ = H K A ^ = 90 ∘

Xét tứ giác AIHK có: I A K ^ = H I A ^ = H K A ^ = 90 ∘

=> Tứ giác AIHK là hình chữ nhật (dhnb)

+) Xét ΔAIK và ΔIAH ta có:

AI chung

AK = IH (theo tính chất của hình chữ nhật)

AH = IK (theo tính chất của hình chữ nhật)

=> ΔAIK = ΔIAH (c - c - c) (1)

Xét 2 tam giác vuông ΔIAH và ΔHAB có: A chung

=> ΔIAH ~ ΔHAB (g - g) (2)

Xét 2 tam giác vuông ΔHAB và ΔACB có: B chung

=> ΔHAB ~ ΔACB (g - g) (3)

Từ (1), (2) và (3) ta có: ΔAIK ~ ΔACB

Đáp án: A

1: BA=căn 10^2-6^2=8cm

sin ABC=AC/BC=3/5

=>góc ABC=37 độ

AH=6*8/10=4,8cm

BH=BA^2/BC=8^2/10=6,4cm

2: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

3: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB 

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

18 tháng 3 2016

BT 1:

a/ Xét tg ABE và tg ACF có

^BAE=^CAF (AD là phân giác ^BAC)

^AEB=^AFC=90

=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)

b/ Xét tg BDE và tg CDF có

^BDE=^CDF (góc đối đỉnh)

^BED=^CFD=90

=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)

Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)

BT 2:

a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)

cm tương tự cũng có AI//KH (cùng vg với AC)

=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)

^BAC=90

=> AIHK là hcn

b/

+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)

+ Xét 2 tg vuông IAK và tg vuông HKA có

IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)

=> ^AIK=^AHK (2)

Từ (1) và (2) => ^AIK=^ACB

2 tháng 4 2017

Còn câu c sao ạ

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:

\(AI\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:

\(AK\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

hay \(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)

Xét ΔAIK vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)(cmt)

Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)

6 tháng 2 2022

Làm ý 2 và 3

 

2: Xét tứ giác AKHI có 

\(\widehat{AKH}+\widehat{AIH}=180^0\)

Do đó: AKHI là tứ giác nội tiếp

Suy ra: \(\widehat{AIK}=\widehat{AHK}\)

mà \(\widehat{AHK}=\widehat{C}\)

nên \(\widehat{AIK}=\widehat{ACB}\)

3: Xét ΔAIK và ΔACB có 

\(\widehat{AIK}=\widehat{ACB}\)

\(\widehat{KAI}\) chung

Do đó: ΔAIK∼ΔACB

17 tháng 4 2022

giúp mình với ạ

 

17 tháng 4 2022

alo ạ

2 tháng 4 2017

Ưu tiên câu c

17 tháng 5 2020

a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hcn

b: AIHK là hcn

=>góc AIK=góc AHK=góc C

=>ΔAIK đồng dạng với ΔACB