K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

Đáp án B

15 tháng 5 2022

Xét ptr hoành độ của `(d)` và `(P)` có:

       `(m-1)x^2+2mx+3m-1=2x+m`

`<=>(m-1)x^2+2(m-1)x+2m-1=0`  `(1)`

`(d)` tiếp xúc `(P)<=>` Ptr `(1)` có nghiệm kép

     `<=>{(a \ne 0),(\Delta'=0):}`

     `<=>{(m-1 \ne 0),((m-1)^2-(m-1)(2m-1)=0):}`

     `<=>{(m \ne 1),(-m(m-1)=0):}`

     `<=>m=0`

    `->B`

15 tháng 5 2022

Phương trình hoành độ giao điểm : \(m-1x2+2mx+3m-1=2x+m\)

\(\Leftrightarrow m-1x2+2m-1x+2m-1=0\)

Để d tiếp xúc với P khi và chỉ khi phương trình có nghiệm kép
\(\Leftrightarrow m-1\ne0\Delta'=m-15-m-12m-1=-mm-1=0\) \(\Leftrightarrow m\ne1m=0m=1\Leftrightarrow m=0\)

\(\Rightarrow\) chọn \(B\)

15 tháng 5 2022

lỗi ạ

15 tháng 5 2022

lx

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

21 tháng 11 2018

parabol (P): y =  x 2  ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x 2  = 2x + m ⇔  x 2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)

13 tháng 6 2021

pt hoành độ giao điểm: \(x^2-2mx-2m+3=0\)

Để đường thẳng tiếp xúc với parabol thì pt có 1 nghiệm duy nhất

\(\Rightarrow\Delta'=0\)

\(\Delta'=m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

3 tháng 2 2021

1. Ta có đồ thị :

2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)

Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)

- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)

\(\Leftrightarrow m=-1\)

3. Có phương trình hoành độ giao điểm :

\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)

\(\Rightarrow x=1\)

\(\Rightarrow y=1\)

Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)