Cho tam giác ABC, D là trung điểm của AC, E là trung điểm của BC, AE vuông góc với BD. Chứng minh BC < 2.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tma giác AEB và tam giác DEC có :
BE = EC do E là trđ của BC (Gt)
AE = ED do E là trđ của AD (gt)
góc BEA = góc DEC (đối đỉnh)
=> tam giác AEB = tam giác DEC (c-g-c)
b, xét tam giác CEA và tam giác BED có:
BE = EC (Câu a)
AE = ED (câu a)
góc BED = góc CEA (đối đỉnh)
=> tam giác CEA = tam giác BED (c-g-c)
=> góc DBE = góc ECA (đn) mà 2 góc này slt
=> CA // BD (Đl)
c, xét tam giác AHC và tam giác KHC có : HC chung
AH = HK do K là trđ của AH (gt)
góc AHC = góc KHC =90
=> tam giác AHC = tam giác KHC (2cgv)
=> AC = CK (đn)
mà AC = BD do tam giác BED = tam giác CEA (Câu b)
=> BD = AC = CK
a) Ta có:
- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.
- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.
Vậy tam giác ABD = tam giác EBD.
b) Ta có:
- Góc ABD = góc EBD (do chứng minh ở câu a).
- Góc ADB = góc EDB (do cùng là góc vuông).
- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).
- Do đó, BD vuông góc với AE.
- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.
c) Ta có:
- Tia Cx vuông góc với tia BD tại H.
- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.
- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.
- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).
- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE
c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
Ta có: BD\(\perp\)AE
AE//CF
Do đó: BD\(\perp\)CF
mà BD\(\perp\)CH
và CH,CF có điểm chung là C
nên C,H,F thẳng hàng
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAE cân tại B
mà BM là phân giác
nên BM vuông góc AE tại M và M là trung điểm của AE
Câu 1:
Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: BA=BE(hai cạnh tương ứng)
Câu 2:
Xét ΔABH và ΔEBH có
BA=BE(cmt)
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
BH chung
Do đó: ΔABH=ΔEBH(c-g-c)
Suy ra: AH=EH(hai cạnh tương ứng)
mà A,H,E thẳng hàng
nên H là trung điểm của AE