K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Đường thẳng d: y = mx + n và parabol (P): y   =   a x 2 cắt nhau tại hai điểm phân biệt  khi phương trình  a x 2   =   m . x   +   n có hai nghiệm phân biệt.

Đáp án: A

2 tháng 9 2018

Đáp án C

Đường thẳng d: y = mx + n và parabol (P):  y = a x 2  không cắt nhau thì phương trình  a x 2 = m x + n  vô nghiệm.

26 tháng 9 2017

Đường thẳng d: y = mx + n và parabol (P): y   =   a x 2 không cắt nhau khi phương trình  a x 2   =   m . x   +   n   vô nghiệm

Đáp án: C

a: Thay x=1 vào (P), ta được:

y=1^2=1

Thay x=1 và y=1 vào (d), ta được:

m+n=1

=>m=1-n

PTHĐGĐ là:

x^2-mx-n=0

=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0

Δ=(n-1)^2-4*(-n)

=n^2-2n+1+4n=(n+1)^2>=0

Để (P) tiếp xúc (d) thì n+1=0

=>n=-1

b: n=-1 nên (d): y=2x-1

(d1)//(d) nên (d1): y=2x+b

Thay x=2 vào y=x^2, ta được:

y=2^2=4

PTHĐGĐ là:

x^2-2x-b=0

Δ=(-2)^2-4*1*(-b)=4b+4

Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0

=>b>-1

5 tháng 7 2021

Xét pt hoành độ gđ của (P) và (d) có:

\(x^2=mx+m+3\)

\(\Leftrightarrow x^2-mx-m-3=0\)  (I)

Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung

\(\Leftrightarrow\) Pt (I) có hai nghiệm dương 

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)

Vậy...

a: 

loading...

b: PTHĐGĐ là:

2x^2-(2m-2)x+m-1=0

Δ=(2m-2)^2-4*2*(m-1)

=4m^2-8m+4-8m+8

=4m^2-16m+12

=4m^2-2*2m*4+16-4=(2m-4)^2-4=(2m-6)(2m-2)

Để (d) cắt (P) tại 2 điểm pb thì (2m-6)(2m-2)>0

=>m>3 hoặc m<1

1: PTHĐGĐ là:

x^2-x-m+1=0(1)

Δ=(-1)^2-4(-m+1)=1+4m-4=4m-3

Để (P) cắt (d) tại hai điểm phân biệt thì 4m-3>0

=>m>3/4

Để (1) có hai nghiệm dương phân biệt thì m>3/4 và 1>0 và -m+1>0

=>m>3/4 và -m>-1

=>3/4<m<1

10 tháng 2 2021

kiểm tra lại đề nhé lỗi quá

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

a: y=mx+3

Thay x=1 và y=0 vào (d), ta được:

m+3=0

=>m=-3

b: PTHĐGĐ là:

x^2-mx-3=0

Vì a*c=-3<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{m^2-4\left(-3\right)}=2\)

=>m^2+12=4

=>m^2=-8(loại)

=>KO có m thỏa mãn đề bài